
 VOL. 17, NO. 13, JULY 2022 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1358

APPLICATION OF CLUSTERING TECHNIQUES IN THE ANALYSIS OF

MOUSE TRACKING TESTS

Gabriel E. Chanchí-Golondrino
1
, Manuel A. Ospina-Alarcón

1
and Wilmar Y. Campo-Muñoz

2

1Programa de Ingeniería de Sistemas, Facultad de Ingeniería, Universidad de Cartagena, Cartagena, Colombia
2Programa de Ingeniería Electrónica, Facultad de Ingeniería, Universidad del Quindío, Armenia, Quindío

E-Mail: gchanchig@unicartagena.edu.co

ABSTRACT

With the growth in the number of applications deployed in cloud app repositories and the increase in the number

of users consuming them, usability has become a differentiating factor that promotes the competitiveness of software

companies and user productivity. One of the usability tests that focuses on evaluating the layout and/or distribution of the

elements in the graphic interface is the mouse tracking test, which has as a challenge the analysis of the mouse trace

obtained in the test. In this paper we propose as a contribution the application of unsupervised learning techniques and

specifically the use of clustering techniques from the K-Means algorithm in the analysis of the mouse trace obtained in a

usability test under the mouse tracking approach. In this way, from the images with the mouse traces generated in these

tests, the distribution of the mouse trace points around a set of centroids is obtained, with the purpose of determining the

area of the screen in which there was more interaction in the test by the user and in order to make decisions on the layout

and distribution of the interface components.

Keywords: clustering, mouse tracking, unsupervised learning, usability.

INTRODUCTION
With the increase in the number of applications

developed and published in cloud app stores, as well as in

the number of users that consume them, usability has

become one of the key aspects that contribute to

improving the competitiveness of companies and the

productivity of end users[1]-[5]. According to ISO 9241,

usability can be defined as the extent to which a software

product can be used by specific users to accomplish their

objectives effectively, efficiently and with satisfaction in a

given context of use[6]-[9]. Similarly, according to ISO

9126-1 and ISO 25000, usability corresponds to one of the

attributes that define software quality and can be defined

as the ability of a software to be understood, learned and

used in a simple and attractive way[10]-[12].

Usability can be involved in the software

development process, both in the design phase and in the

evaluation phase. In the design phase through the inclusion

of heuristics and usability guidelines, while in the

evaluation phase through the development of usability

tests or user tests, in which a set of users perform a set of

tasks on a given software in a controlled environment or

usability laboratory[3], [13]-[15]. Among the usability

tests, those based on the mouse tracking approach stand

out, in which the added value is the capture of the mouse

trace generated in the interaction of each user in the

different tasks developed in the test[16], [17].

One of the existing challenges in usability testing

based on mouse tracking is the analysis of the mouse trace

captured from each user who performed the test in a

controlled environment, in order to determine whether the

interface controls of the evaluated software are properly

distributed with respect to the utilization of the

hierarchical zones [16]. In this sense, although there are

tools that allow the capture of this data in the tests, there is

no evidence of the application of machine learning models

in the analysis of the mouse trace, so it is necessary to

have tools that allow the analysis of the distribution on the

screen of the points of the mouse trace and its relationship

with the zones on the screen automatically using

unsupervised learning algorithms or clustering. Machine

learning clustering methods start from a set of examples,

which are grouped or organized into clusters according to

a notion of similarity that is generally determined by a

distance function or metric [18]-[22].

In this paper we propose as a contribution, the

application of unsupervised learning techniques and

specifically the application of clustering algorithms in the

analysis of mouse traces obtained in a usability test.For

this purpose, a tool was developed in Python language and

using the openCV and scikit-learn libraries, which

receives as input the image with the mouse trace of a

usability test and obtains as a result the distribution of the

points of the trace around a set of centroids, in order to

determine the areas of the screen or interface in which

there is more interaction. Thus, the results obtained by the

analysis tool allow the test coordinator and the

development team of the evaluated software to make

decisions regarding the distribution of the components in

the interface.

The rest of the article is organized as follows:

first, the different phases of the methodology used for the

development of this research are described. Subsequently,

the results obtained through this research are presented,

including the description of the design and implementation

of an automated tool that allows the application of

clustering techniques on the mouse trace captured in a

mouse tracking test. Likewise, this section includes the

description of a case study developed from the use of the

proposed tool on the mouse trace generated by a user in

the interaction with the software for the creation of

algorithms by means of flowcharts: DFD. Finally, the

conclusions and future work derived from this research are

presented.

mailto:gchanchig@unicartagena.edu.co

 VOL. 17, NO. 13, JULY 2022 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1359

METHODOLOGY CONSIDERED

For the development of this research, 4

methodological phases were defined (see Figure-1):

characterization of mouse tracking tests, design of the

analysis tool, construction of the analysis tool and finally

case study (see Figure-1).

Figure-1. Methodology considered.

Phase 1 of the methodology identified the main

characteristics of usability testing under the mouse

tracking approach, in which while a group of users

perform a set of tasks within an interactive application and

in a controlled environment or usability laboratory, the

mouse trace is captured using proprietary or free software

to obtain as a final result an image with the mouse trace

generated in the different tasks of the usability test. Once

the mouse tracking tests were characterized in phase 1,

phase 2 of the methodology focused on the design of the

proposed analysis tool, which included the description of

the functional modules that make up the tool, as well as

the specification of the different processes developed in

the functional modules and the generation of the high-

level interfaces that allow compliance with them. Based on

the design defined in phase 2, in phase 3 the techniques

and technologies for processing the images with the mouse

trace through the application of clustering techniques were

selected. Once the above was done, the implementation of

the analysis tool using the selected techniques and

technologies was carried out. Thus, the Python language

was chosen for the implementation of the tool, so that the

Python openCV library was selected for the processing of

the images with the mouse trace, while the Python scikit-

learn library was used for the application of the clustering

techniques. Finally, in phase 4 of the methodology, a case

study was conducted, in which use was made of the tool

implemented for the analysis of the data obtained in a

mouse tracking test performed on the DFD flowchart

creation tool.

RESULTS AND DISCUSSIONS

This section describes the results obtained from

the development of this research, which includes the

definition of the functional modules of the proposed

analysis tool, the description through a flowchart of the

processes developed by the tool for the application of

clustering techniques on the images resulting from a

mouse tracking test and finally, the description of the

results obtained in the application of the proposed tool on

the results of a case study developed in this research.

Accordingly, Figure-2 shows the functional

modules that make up the mouse tracking test analysis

tool, using clustering techniques.

Figure-2. Block diagram of the tool.

The GUI module of the analysis tool is in charge

of displaying the tool interface and managing the different

components (labels, buttons, text areas, text boxes), as

well as handling the different events that allow the end

user (usability test coordinator) to interact with the

interface. Thus, from the interface components generated

by this module, the test coordinator can attach the image

with the mouse trace generated in a mouse tracking test, in

order to perform the clustering analysis and obtain as

output a new image showing the centroids of each cluster

obtained and its distribution in the 4 zones of the screen

(upper left, upper right, lower left and lower right). The

GUI module was implemented through the use of the

Python Tkinter library. The image processing module, on

the other hand, is responsible for transforming the input

image to grayscale and iterating it in order to determine

the coordinates of the mouse trace distributed along the

image to store them in a numerical array. The image

processing module was implemented through the use of

the openCV computer vision library. On the other hand,

the clustering analysis module is in charge of taking the

numerical array of coordinates generated by the image

processing module and obtaining a set of clusters with

their associated centroids, as well as the number of

instances or samples corresponding to each of the clusters.

The clustering analysis module was implemented through

the use of the scikit-learn library of the Python language.

The image generation module is responsible for drawing

on the image with the original mouse trace, the 4 zones of

the screen and the clusters obtained by the cluster analysis

module, in order to identify where the points of interest of

the trace are concentrated. The image generation module

was implemented using the Python openCV library.

P1. Characterization

of mouse tracking

tests

P2. Design of the

proposed analysis

tool

P3. Construction of

the analysis tool
P4. Case study

 VOL. 17, NO. 13, JULY 2022 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1360

Finally, the reporting module is responsible for generating

a .CSV file with the results of the clustering analysis,

which includes the centroids of each cluster and the

number of instances spatially distributed around each

centroid. The reporting module was implemented through

the use of the Python file class.

On the other hand, Figure-3 shows a flowchart

representing the different functional processes developed

by the analysis tool for the application of clustering

techniques on the mouse trace images of a usability test.

Figure-3. Tool flow chart.

Thus, once the analysis tool is started, the test

coordinator proceeds to load the image with the mouse

trace obtained in the mouse tracking test, which is

normally generated by a tracking tool and includes the

mouse trace in black on a white background. Thus, once

this image is loaded, the tool iterates over it in order to

identify the points or coordinates of the black pixels and

store them in a numerical array. Once the array of

coordinates has been obtained, the analysis tool applies the

clustering model based on the K-Means algorithm, taking

into account a given number of clusters. As a result, the

tool obtains the coordinates of the centroids belonging to

each cluster and the number of instances associated to

each centroid. The coordinates obtained for the centroids

are plotted on the original image, which also shows the

four zones on the screen, so that it is possible to see the

points of interest on the screen and the zone to which these

belong. Finally, the tool allows generating a report

in .CSV format with the results of the application of the

clustering model on the evaluated mouse trace.

Once the functional processes developed by the

tool have been described, the graphical interface of the

tool is presented below, which is made up of 3 tabs:

"Process Image", "Clustering Analysis" and "Graphical

Analysis", as shown in Figure-4.

Figure-4. Analysis tool interface.

The "Process Image" tab is shown in Figure-4

and is in charge of loading and visualizing the image with

the mouse trace by pressing the "Open" button, as well as

obtaining the number of points of the trace and their

associated coordinates by pressing the "Process Image"

button. These coordinates are stored in a numerical array,

for use by the clustering models in the other tabs of the

tool. The process of obtaining the coordinates of the

mouse trace is performed through the advantages provided

by the openCV Python library. Thus, as an example, in

Figure-4 a mouse trace image with dimensions 1920x1080

was loaded, which was generated using the IoGraph tool

[23] and whose number of points of the trace is 576636.

On the other hand, the "Clustering Analysis" tab

is presented in Figure-5 and is responsible for the

application of the clustering techniques on the array of

points or coordinates obtained in the "Process Image" tab.

Thus, by selecting in the "Clustering Analysis" tab the

number of clusters to be determined and pressing the

"Analyze" button, the centroids corresponding to each

cluster and the number of instances that have been

categorized in each cluster are obtained. In the same way,

in this tab it is possible to generate a report in .CSV format

by clicking on the "Report" button. The process of

obtaining the clusters and their associated centroids is

performed by the analysis tool through the use of the

scikit-learn Python library. As an example, Figure-5 shows

the results of the analysis with 3 clusters, performed on the

image of the mouse trace shown in Figure-4, so that the

following 3 centroids were obtained: C1={X=1469.14,

Y=551.51, Number of Instances=183560, %Instances

=31.833%}, C2={X=496.57, Y=564.308, Number of

Instances=157847, %Instances=27.374%},

C3={X=963.952, Y=531.744, Number of

Instances=235229, %Instances=40.793}. Thus, it can be

seen that the cluster with centroid C3 is the one with the

highest number of associated points with 40.793%, and it

is located in zone 2 of the screen (upper right part). On the

other hand, the cluster with the least number of instances

 VOL. 17, NO. 13, JULY 2022 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1361

or points is cluster 2, which has 27.374% of the instances

and is located in zone 3 of the screen (bottom left).

Figure-5. “Clustering Analysis” tab of the tool.

Finally, Figure-6 shows the "Graphical Analysis"

tab, where it is possible to obtain graphically the

representation of the centroids obtained in the original

mouse trace image and their relationship with the 4 screen

zones considered in this proposal. The new image with

centroids and screen zones is generated using the

advantages provided by the openCV library.

Figure-6. “Graphical Analysis” tab of the tool.

As an example, it is possible to observe that

regarding the analysis with 3 clusters for the image with a

trace of 576636 presented in Figure-4, it is obtained that

the centroid C1 of cluster 1 belongs to zone 4, the centroid

C2 of cluster 2 belongs to zone 3, while the centroid C3 of

cluster 3 belongs to zone 2 and is the one with the highest

number of associated points.

Once the different tabs of the graphical interface

of the analysis tool have been presented, a case study is

described below, where the proposed tool was applied on

the mouse trace resulting from a usability test in which a

user interacted with the DFD software, which allows the

creation of programming algorithms through flowcharts

(see Figure-6).

Figure-7. DFD tool.

Within this test, a user was requested to build a

flowchart algorithm to calculate the area of a rectangle,

while the IoGraph tool was used to capture the mouse

trace of the test. Thus, by applying the analysis tool to the

mouse trace of the test, which has a total of 84463 points,

the results presented in Figure-8 were obtained for a total

of 3 clusters.

Figure-8. Results obtained in the case study.

It can be seen that the centroid C1 and centroid

C3 are located in zone 1 of the screen (upper left part),

while centroid C2 is located in zone 2 of the screen (upper

right part). Similarly, with respect to the instances of each

cluster, Table-1 shows the numerical and percentage

distribution of the instances around the 3 defined

centroids.

Table-1. Clusters and centroids defined.

Cluster Centroids

Number of

instances and

percentage

1
C1={X =278.973,

Y=203.354}

29954

35.464%

2
C2={X =963.554, Y

= 456.442}

26426

31.287%

3
C3={X =640.174,

Y=283.582}

28083

33.249%

 VOL. 17, NO. 13, JULY 2022 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1362

Likewise, it is possible to see from Table 1 that

cluster 1 is the cluster with the highest number of

instances with a distribution percentage of 35.464%;

however, the 3 clusters have a number of instances close

to each other. Although both clusters 1 and 3 were

classified in zone 1, it is important to note that 31.248% of

the instances were classified in zone 2. This is explained

by the fact that the evaluated tool displays the flowchart

that is generated by the user in the center of the screen,

while the icons or components of the flowchart are located

in the upper left part of the screen, so that the path shown

in the mouse trace can make the process of creating a

flowchart inefficient. Thus, it is recommended that the

DFD tool places the flowchart on the left and by default

the tool window has a smaller width.

CONCLUSIONS
Taking into consideration the need for methods,

techniques and tools that support the analysis of the results

obtained in a usability test under the mouse-tracking

approach, in this article we propose as a contribution the

application of unsupervised learning techniques and

specifically of clustering models for the analysis of the

mouse trace resulting from a mouse-tracking test. Thus,

for the application of these methods, a tool was developed

in the Python language and with the support of the scikit-

learn library, which from the array of coordinates of the

mouse trace allows obtaining a set of clusters and their

associated centroids, as well as their spatial distribution

with respect to the coordinates of the trace.

The method employed based on the use of the K-

Means algorithm and the analysis tool proposed to

implement it are intended to support the coordinator of a

usability test in terms of identifying the areas of the screen

where the user focuses his attention, in order to facilitate

decision-making regarding the improvement of the layout

of the interface components. In this sense, the proposed

tool has the advantage of generating a new image from the

image with the original mouse trace, in which the defined

centroids and their location with respect to the four

defined screen zones are presented.

The open software tools and/or libraries used and

belonging to the Python language proved to be suitable for

the application of clustering techniques on the mouse trace

obtained in a usability test. Thus, the Python Tkinter

library was used to generate the tool's graphical interface

and to manage the events associated with its different

components. The openCV library compatible with the

Python language was used to obtain the points or

coordinates that make up the mouse trace and to generate

the new image of the mouse trace in which the centroids

obtained in the clustering analysis were included. Finally,

the Python library scikit-learn was used to apply the

clustering models on the points or coordinates belonging

to the analyzed mouse trace.

Through the case study developed on the DFD

tool from the analysis tool, it was possible to determine

that the three clusters obtained have a similar number of

instances, which is represented by a distribution of more

than 30% for each cluster. Likewise, two of these clusters

were classified in zone 1 of the screen (upper left), while

the remaining cluster was classified in zone 2 of the screen

(upper right). This led to the conclusion that the location

of the flowchart within the DFD tool requires the user to

make long mouse traces from the upper left side where the

components of the diagram are located, to the center of the

screen where the diagram is being generated. In this sense

and in order to make the interaction with the user more

efficient, it is necessary that the designers and developers

of the tool place the flowchart generated by the tool on the

left side of the screen and below the icons with the

components of the flowchart.

Finally, this proposal is intended to be fed back

by including other clustering methods, such as those based

on the DBSCAN algorithm. It is also intended to

extrapolate this proposal to the mobile device

environment, in order to evaluate the distribution of the

interface components in these contexts.

ACKNOWLEDGMENTS

The authors would like to thank the Universidad

de Cartagena-Colombia and the Universidad del Quindío-

Colombia for their support in the development of this

research.

REFERENCES

[1] D. Hering, T. Schwartz, A. Boden and V. Wulf. 2015.

Integrating usability-engineering into the software

developing processes of SME: A case study of

software developing SME in Germany. Proc. - 8th Int.

Work. Coop. Hum. Asp. Softw. Eng. CHASE 2015,

pp. 121–122, doi: 10.1109/CHASE.2015.22.

[2] C. Dinkel, D. Billenstein, D. Goller and F. Rieg.

2018. User-oriented optimization of the GUI of a

finite element programme to enhance the usability of

simulation tools. doi: 10.23919/SEEDA-

CECNSM.2018.8544936.

[3] D. M. Delgado Agudelo, D. F. Girón Timaná, G. E.

Chanchí Golondrino and K. Márceles Villalba. 2018.

Propuesta de una herramienta para la estimación de la

satisfacción en pruebas de usuario, a partir del análisis

de expresión facial,” Rev. Colomb. Comput., 19(2): 6-

15, doi: 10.29375/25392115.3438.

[4] K. Radle and S. Young. 2001. Partnering usability

with development: how three organizations

succeeded. IEEE Softw., 18(1): 38-45, Jan. 2001, doi:

10.1109/52.903164.

[5] M. Monroy-Rios, G. Chanchí-Golondrino and P.

Acosta-Vargas. 2020. Sistema automatizado para la

conducción de inspecciones de usabilidad y

 VOL. 17, NO. 13, JULY 2022 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1363

accesibilidad – SIUSA. Rev. Ibérica Sist. e Tecnol.

Informação, no. E32, pp. 50-63.

[6] N. Kerzazi and M. Lavallee. 2011. Inquiry on

usability of two software process modeling systems

using ISO/IEC 9241. In Canadian Conference on

Electrical and Computer Engineering, pp. 000773–
000776, doi: 10.1109/CCECE.2011.6030560.

[7] P. Weichbroth. 2020. Usability of mobile

applications: A systematic literature study. IEEE

Access, 8: 55563-55577, doi:

10.1109/ACCESS.2020.2981892.

[8] V. F. Martins, M. De Paiva Guimaraes, and A. G.

Correa. 2013. Usability test for Augmented Reality

applications. doi: 10.1109/CLEI.2013.6670668.

[9] L. Martin and M. Dudda. 2017. Usability reasoning

using OWL 2 RL in Proceedings - 2016 10th

International Conference on the Quality of

Information and Communications Technology,

QUATIC 2016, pp. 155-159, doi:

10.1109/QUATIC.2016.040.

[10] S. Rochimah, H. I. Rahmani and U. L. Yuhana. 2015.

Usability characteristic evaluation on administration

module of Academic Information System using

ISO/IEC 9126 quality model. 2015 Int. Semin. Intell.

Technol. Its Appl. ISITIA 2015 - Proceeding, pp. 363-

368, doi: 10.1109/ISITIA.2015.7220007.

[11] C. Santos, T. Novais, M. Ferreira, C. Albuquerque, I.

H. De Farias and A. P. C. Furtado. 2016. Metrics

focused on usability ISO 9126 based. in Iberian

Conference on Information Systems and

Technologies, CISTI, vol. 2016-July, doi:

10.1109/CISTI.2016.7521437.

[12] M. D. Dzulfiqar, D. Khairani and L. K. Wardhani.

2019. The Development of University Website using

User Centered Design Method with ISO 9126

Standard. doi: 10.1109/CITSM.2018.8674325.

[13] G. E. Chanchí, M. Sánchez, and W. Y. Campo. 2018.

Sistema software para el análisis del estrés mental en

test de usuarios. Campus Virtuales, 7(2): 105-114,

[Online]. Available: www.revistacampusvirtuales.es.

[14] G. E. Chanchi, M. A. Ospina and J. L. Pérez. 2020.

Sistema IoT para la monitorización de la variabilidad

del ritmo cardiaco en pruebas de usabilidad. Rev.

Espac., 41(25): 2020, [Online]. Available:

https://www.revistaespacios.com.

[15] G. E. Chanchí-Golondrino, M. A. Ospina-Alarcón and

W. Y. Campo-Muñoz. 2021. Herramienta para el

Análisis de Evaluaciones Heurísticas de Usabilidad

Mediante Lógica Difusa. Ing. Y Compet., 24(1), doi:

10.25100/iyc.v24i1.11095.

[16] D. A. Albornoz, S. A. Moncayo, S. Ruano-Hoyos, G.

E. Chanchí-Golondrino and K. Márceles-Villalba.

2019. Sistema software para la ejecución de pruebas

de usabilidad bajo el enfoque de mouse tracking.

TecnoLógicas, 22: 19-31, doi:

10.22430/22565337.1511.

[17] C.-F. Peng and W.-H. Liao. 2017. Evaluation of

Interactive Data Visualization Tools Based on Gaze

and Mouse Tracking. in 2016 IEEE International

Symposium on Multimedia (ISM), pp. 431-434, doi:

10.1109/ISM.2016.0099.

[18] X. Chu, J. Lei, X. Liu and Z. Wang. 2020. KMEANS

Algorithm Clustering for Massive AIS Data Based on

the Spark Platform. 2020 5th Int. Conf. Control.

Robot. Cybern. CRC 2020, pp. 36-39, doi:

10.1109/CRC51253.2020.9253451.

[19] S. V. Gajbhiye and G. B. Malode. 2018. Enhancing

pattern recognition in social networking dataset by

using bisecting KMean. in Proceedings of 2017

International Conference on Intelligent Computing

and Control, I2C2 2017, 2018-Janua: 1-5, doi:

10.1109/I2C2.2017.8321776.

[20] J. H. Xu and H. Liu. 2010. Web user clustering

analysis based on KMeans algorithm. in ICINA 2010

- 2010 International Conference on Information,

Networking and Automation, Proceedings, vol. 2, doi:

10.1109/ICINA.2010.5636772.

[21] I. Pérez-Verona and L. Arco-García. 2016. Una

revisión sobre aprendizaje no supervisado de métricas

de distancia. Rev. Cuba. Ciencias Informáticas, 10(4):

43–67, [Online]. Available:

https://www.redalyc.org/pdf/3783/378349316004.pdf.

[22] A. Liu, J. Lu and G. Zhang. 2021. Concept Drift

Detection via Equal Intensity k-Means Space

Partitioning. IEEE Trans. Cybern., 51(6): 3198-3211,

Jun. 2021, doi: 10.1109/TCYB.2020.2983962.

[23] IOGraphica. 2022. IoGraph. [Online]. Available:

https://iographica.com/.

