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ABSTRACT 

This manuscript is devoted to the development of methods for finding the diffusion coefficient of soil moisture 

and the thermal conductivity coefficient of soil by using the system of Lykov's equations for heat and mass transfer in the 

soil. The conjugate system of partial differential equations is constructed by using the direct initial-boundary value problem 

and additional boundary conditions on the accessible boundary of the region. Iterative formulas for finding the diffusion 

coefficient of soil moisture and the thermal conductivity coefficient are derived from the minimization of specially 

constructed functional and solution of direct and conjugate problems. The direct and conjugate problems are discretized by 

the Dufort-Frankel Difference scheme. An algorithm for solving the coefficient-inverse problem is developed and the 

program is designed in Matlab software. Numerical calculations are conducted in order to verify the convergence of 

iterative processes. 
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List of symbols 

qk  thermal conductivity coefficient   KmW  /  

mk  moisture conductivity coefficient

  Mmkg
0 s /   

qс  heat capacity   KkJ  g/  

mс  moisture capacity 

     Mdrykgmoisturekg
0 body /   

  dry body density  3/ mkg  

  ratio of vapor diffusion coefficient to the 

coefficient of total moisture diffusion 

  heat of phase change  kgJ /  

  thermogradient coefficient  KM /0
 

q  convective heat transfer coefficient   KmW  / 2
 

m  convective mass transfer coefficient 

  Msmkg
02 /   

H  thickness  m  

0T  initial temperature  K  

aT  air temperature  K  

0U  initial moisture potential  M
0

 

aU  air moisture potential  M
0

 
 

1. INTRODUCTION 

The number of new porous materials in 

construction keeps increasing. Therefore, we have chosen 

the transfer of moisture and heat in a porous medium. The 

object of research is porous materials, while the subject of 

research is a system of nonlinear differential equations 

with partial derivatives. The moisture-conducting and 

heat-conducting characteristics of new materials are 

usually unknown. In this regard, the development of 

methods for finding material parameters becomes a 

relevant task. Therefore, we aim to develop approximate 

methods for finding the above parameters. The purpose of 

research is to generate new methods for calculating the 

moisture-conducting characteristics of material. The 

research methodology is the method of mathematical 

modeling. 

Moisture is a key factor in the durability and 

performance of buildings. Excessive levels reduce 

structural quality, affect indoor air quality, thermal 

comfort, along with energy efficiency in a building [1]. As 

a consequence, a number of models have been proposed 

by many scientists to predict the impact of moisture on the 

energy performance of buildings. The main overview can 

be found in the work [2]. Among the physical phenomena, 

the transport of air through porous construction medium 

has a decisive influence on the amount of moisture. 

Various studies enhance these effects using both 

experimental and numerical results [3]-[5]. Several 

numerical models are studied in order to predict the 

physical phenomena of conjugate transfer of heat, air, and 

moisture through porous building materials. Their physical 

concepts are based on conservation laws of mass for dry 

air, steam and liquid water, as well as on the conservation 

law of energy, which was described in detail in an early 

work of Lykov [6]. As a succession of his work, numerical 

models proposed in later studies can be divided into two 

main groups. The first group considers three evolutionary 

differential equations for calculating temperature, mass 

content, and air pressure in a porous medium. Papers [7] - 

[9] propose a model that investigates transfer through 

hollow porous blocks. It is based on an implicit finite 
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difference numeric scheme.  Just recently, commercial 

COMSOLTM software has been used to research a 

numerical model for this kind of physical problems [10]. 

The authors of this work specify the scheme that is based 

on a time-explicit finite element approach. The main 

disadvantage of these numerical models is their 

computational cost. The implicit approach requires costly 

sub-iterations at each time step to handle severe 

nonlinearities of the problem. An explicit scheme requires 

very delicate time steps to satisfy the so-called Courant-

Friedrichs-Levy (CFL) stability conditions. Indeed, the 

characteristic time of air transfer is very short in 

comparison with time for heat and mass transfer.  

The substance associated with the capillary-

porous body in the region of positive temperatures

)0( Ct   can be in the form of liquid, vapor and inert 

gas; at negative temperatures )0( Ct  - in the form of 

ice, subcooled liquid, vapor and gas [11]. Depending on 

the type of relation between moisture and body, the 

freezing temperature of liquid will vary within wide 

ranges [12 - 14]. Therefore, there is always a certain 

amount of subcooled liquid in capillary-porous bodies at 

negative temperatures with different forms of moisture 

bonding [15, 16].  

The second specific feature of mass and heat 

transfer in capillary-porous bodies is the partial filling of 

pores and capillaries with moisture. That is, part of the 

capillaries is filled with liquid and ice, and the rest is filled 

with a vapor-gas mixture. The amount of moisture changes 

in the process of mass and heat transfer for both states 

[17]. Therefore, when deriving transfer equations, it is 

necessary to take into account the change in the 

concentration of moisture in capillaries of the body. 

Methods for solving inverse problems are studied in [18, 

19]. Kabanikhin S. I. et al [19] investigated the mass 

transfer in liquid, which is governed by the equation with 

liquid diffusion coefficient depended on the concentration. 

Numerical algorithm for solving direct and inverse 

problems is presented. The works [20, 21] researches the 

method of numerical construction of curvilinear structured 

grids in doubly connected domains and the numerical 

simulation of convective flow of an unevenly heated fluid 

in a curvilinear coordinate system. Calculations were 

performed for various configurations of the cavity and 

temperature conditions at the boundary. 

 

2. MATHEMATICAL MODEL 
The mathematical model of interrelated heat and 

mass transfer in one-dimensional case is written in the 

form of system of Lykov's differential equations [6]:       
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Here ),( tx and ),( txW are functions that 

characterize the change in temperature and mass transfer 

potential, x is the stretched coordinate over the layer 

thickness, t  is the time, mCr  , WD isdiffusion 

coefficient and D is thermal diffusion coefficient. 

Boundary conditions of the third kind for possible 

real situations on the earth's surface are revealed as: 
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where

m

m
m

C
 ' . 

Boundary conditions at the lower boundary of the 

region 0x  are:  
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At the initial moment of time, the following 

conditions are set:  
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In addition, measured values of temperature and 

moisture potential    ttT gg   W,  on the earth's surface 

are given. It is required to determine the distribution of 

heat and moisture, the diffusion coefficient 
WD and the 

thermal conductivity coefficient qk . The inverse problem 

is solved in the area ).,0(),0( maxtHQ 
 

 

2.1 System of Equations in Dimensionless Variables 

After converting the original system of 

differential equations (1) - (6) to the dimensionless form 

we obtain: 
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   
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In the discussion that follows,
*

x , 
*

t , 
*

qk and

*

WD will be denoted as ,x ,t qk and
WD . 

 

2.2 Construction of Conjugate Problem 

The measured values of temperature and moisture 

in dimensionless form are written in the following form: 
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where 𝑊0and𝑇0 are taken from the initial condition. 

Using the system (7) - (12), it is required to 

determine     .,,,,. qW kDtxUtxT  

From this point on, )(*
tU g

 and )(*
tTg

 will be 

denoted as )(tU g  and )(tTg . 

The problem is solved by an iterative method. 

Firstly, the initial approximations  nDW  and  nkq ,   

when  0n , are given and the next approximations are 

determined from the monotony of the functional 
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The corresponding solutions of the problem (7) - 

(12) for    nknD qW ,  and    1,1  nknD qW are 

denoted as 
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Multiply (14) by an arbitrary function ),( tx
and integrate over the entire domain ).1,0()1,0( Q
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After a single integration by parts over x and t , the next equality is obtained: 
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Taking into account the initial-boundary conditions (12), 

(11), (9) and (18), we apply differentiation by parts over 

the variable x to the fourth term of the right-hand side of 

equality (20) and deduce that, 
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Now, we multiply (15) by an arbitrary function 
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By putting together equations (21), (22), and collecting similar terms, we derive that, 
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Functions ),( tx  and ),( tx are selected in 

such a way that the following equality is valid: 
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And we set the following boundary conditions for 

functions ),( tx  and ),( tx : 
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At 1t  the following conditions are set: 

 

,0)1,( x  0)1,( x .                 (30) 

 

System (25) - (30) is called the conjugate 

problem of the system (7) - (12). 

 

2.3 Iterative Formula for Calculating Coefficients  

After construction of conjugate problem, the 

following integral equality is derived from the equality 

(24) 
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Subtracting values of the functional of two 

different iterations from the formula (13), we deduce that, 
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Taking into account (31), we derive the equality: 
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The first five terms on the right-hand side of 

equality are the second-order infinitesimal. Therefore, the 

sign of the left-hand side is determined by the sign of the 

last three terms standing on the right-hand side of the 

equal sign. We aim for the monotonical decrease of 

functional from iteration to iteration, hence, 
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descent parameters. 

 

3. NUMERICAL RESULTS 

The computational experiment was carried out by 

the Matlab software package.In order to verify feasibility 

of the method, the following experimentally determined 

thermophysical soil characteristics are taken from [22]: 
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thermal conductivity coefficient,  KmWkq   / 65.0 ; 

moisture conductivity coefficient, 

 Mmkgkm

08  s / 102.2   ; 

heat capacity,  KkJcq   g/ 2500 ; 

moisture capacity, 

    Mdrykgmoisturekgcm

0 body / 01.0  ; 

dry body density, 3/ 370 mkg ; 

ratio of vapor diffusion coefficient to the coefficient of 

total moisture diffusion, 3.0 ; 

heat of phase change, kgJ / 105.2 6 ; 

thermogradient coefficient, KM / 0.2 0 ; 

convective heat transfer coefficient, 

 KmWq   / 5.22 2 ; 

convective mass transfer coefficient, 

 Msmkgm

026  /105.2   . 

At 0t , the material is considered with uniform fields, 

with a temperature CT
0

0 10  and initial moisture 

potential MU
0

0 86 . The boundary conditions are 

represented by air temperature CTa

020  and air 

moisture potential MU a

04 . The computational 

experiment is carried out for soil with a depth of 1 m, 

within 24 hours. 

Dimensionless numerical values are obtained by using 

formulas from chapter 2. The numerical solution is 

calculated by DuFort–Frankel different scheme with 

spatial discretization parameter 
210x  and time 

discretization parameter 
310t . 

Figures 1 and 2 show the numerical results 

obtained at 
32 10,10   tx  with initial 

approximations of the iterative method, diffusion and 

thermal conductivity coefficients of which deviate from 

the exact value by 20%. 

 

 

 

 

 
 

Figure-1. Diffusion coefficient with an initial 

approximation deviated by 20%. 

 

 
 

Figure-2. Thermal conductivity coefficient with an initial 

approximation deviated by 20%. 

 

Figures 3 and 4 show the results of calculating 

diffusion and thermal conductivity coefficients with initial 

approximations deviated from the exact value by 35% at 
32 10,10   tx . 
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Figure-3. Diffusion coefficient with an initial 

approximation deviated by 35%. 

 

 
 

Figure-4. Thermal conductivity coefficient with an initial 

approximation deviated by 35%. 

 

4. CONCLUSIONS AND DISCUSSIONS 
In this paper, we consider the inverse problem for 

a system of partial differential equations, which describes 

the transfer of moisture and heat in the soil. The following 

results are obtained: 

 

- a conjugate problem is derived from the direct initial-

boundary value problem of heat and moisture transfer; 

- iterative formulas for calculating the thermal 

conductivity and diffusioncoefficients are derived 

based on the minimization of functional; 

- direct and conjugate difference problems are 

constructed using the DuFort-Frankel scheme; 

- an algorithm is developed for solving the inverse 

problem and the program is designed in the Matlab 

software package;  

- numerical calculations have been carried out in order 

to prove the convergence of iterative processes. 

 

It should be noted that the Dufort-Frankel scheme 

is used to solve the system (1) - (2) in [23]. And this work 

demonstrates that the Dufort-Frankel scheme is 

unconditionally stable. However, our numerical 

calculations show that the solution of the inverse problem 

of finding diffusion and thermal conductivity coefficients 

by Dufort-Frankel scheme gives conditional stability at
310t . 
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