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ABSTRACT 

Studies in pendulums (oscillatory motion) are significant in physics, engineering, and other fields of knowledge 

and continue to be a topic of active research. Considering the Lagrangian formalism and using the technique of variation of 

canonical variables, the physical symmetrical pendulum was studied. Using the conservation laws, we introduce the 

effective one-dimensional potential, which depends on the dimensionless variable ζ (related implicit with nutation angle) 
and parametrically on reduced energy 𝜀 and two reduced angular momenta,p1 and p2. Only three modes (plane, elliptical, 

and conical) were studied using the effective potential. An advantage to using this approach was to obtain approximate 

analytical expressions to study the phase diagrams that show the pendulum's behavior; therefore, in the plane mode, the 

motion is on a plane, in the elliptical mode, the pendulum moves quasi elliptical, and in the conical mode, the pendulum 

vibrates at a single point - the three modes depending on the initial condition. An advantage of this approach was to obtain 

approximate analytical expressions to study the phase diagrams for these three modes. This approach simplifies and 

visibility a complex problem as the oscillations of the physical pendulum. 

 
Keywords: physical symmetrical pendulum, effective potential, lagrangian formalism, space phase, oscillation modes. 

 

INTRODUCTION 
A pendulum is a rigid object (bob) attached to a 

string, rod, thread, or cord of length ℓ, oscillating freely 

from a stationary point (pivot). If the string (rod, thread, or 

cord) is massless, it is commonly known as a simple 

pendulum. Considering only the rotational motion of the 

rigid body, we have a mathematical pendulum. Also, 

taking into consideration the mass of the string (rod, 

thread, or cord), a physical pendulum (PP) is obtained [1, 

2]. Many pendulums proposed are theoretical and have 

applications in different fields of knowledge, such as 

torsion, inverted, paraconic, symmetric, Foucault, chaotic, 

coupled, quantum, among others [3-19]. 

The dynamics of the spinning symmetric top have 

been extensively studied [20-24], where the spin motion 

and apsidal precession are the most important. 

Considering that the precession and spin motions are small 

perturbations for a PP, a physical symmetrical pendulum 

(PSP) with three degrees of freedom is obtained [25], 

where the nutation motion is dominant. A series of 

approaches have studied the symmetric top and the PSP 

problems to describe their dynamics [26, 27]. 

In this work, we consider the Lagrangian 

formalism to deduce an effective potential that depends on 

one variable () and three fitting parameters (𝜀, 𝑝1, 𝑝2) to 

describe the motion of PSP in terms of Euler angles and to 

analyze the different oscillation modes (plane, elliptical, 

and conical). 

 

THEORETICAL ASPECTS 
Figure1 displays a PSP of mass m and length ℓ, 𝑋 𝑌 𝑍 is a local space-fixed inertial coordinate system 

and �̅��̅�𝑍 ̅for the pendulum-fixed. The Euler angles 

(𝜙, 𝜃, 𝜓) specify an orientation of the fixed axesand form a 

set of generalized coordinates. Between 𝜙 and 𝜑 

(azimuthal angle of the spherical coordinates), there is a 

difference of phase of /2 (𝜙 = 𝜑 + 𝜋/2). 

The description of the motion of PSP is given in 

terms of (𝜙, 𝜃, 𝜓), being 𝜙 the precession angle, 𝜓 the 

angle of rotation around 𝑍 ̅ (symmetry axis), and 𝜃 the 

angle between axes 𝑍 ̅ and Zor nutation angle. 

The kinetic and the potential energies are: 

 𝑇(ϕ̇, θ, θ̇, ψ̇) = 12 {𝐼𝑥  [θ̇2 + ϕ̇2 sin2(θ)] + 𝐼𝑧  [ϕ̇ cos(θ) +ψ̇]2}                                                                          (1) 

 V(θ) = −mgℓ cos(𝜃)                                                      (2) 

 

where 𝐼𝑛, 𝑛 = 𝑥, 𝑧are the momenta of inertia with respect 

to 𝑋 ̅, 𝑍 ̅, respectively. 

 

The Lagrangian of the system is: 

 L(ϕ̇, θ, θ̇, ψ̇) = T(ϕ̇, θ, θ̇, ψ̇) − V(θ)                               (3) 

 

The angles 𝜙and 𝜓 are cyclic coordinates [not 

appear explicitly in Equation (3)]; therefore, their 

corresponding angular momenta 𝑝𝜙 and 𝑝𝜓 are constant of 

motion. Mechanical energy 𝐸 = 𝑇 + 𝑉is also invariant 

(conserved) and the problem to quadrature is reduced [20]. 
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Figure-1. Physical symmetrical pendulum. 𝑋𝑌𝑍 are the 

fixed axes on an inertial reference frame, 𝜙, 𝜃,and 𝜓 are 

the Euler angles used to describe the motion. 

 

The conservation laws are: 

 𝑝ϕ = ∂L∂ϕ̇ = Ix  ϕ̇ sin2(θ) + Iz cos(θ) [ψ̇ + ϕ̇ cos(θ)]      (4) 

 𝑝𝜓 = ∂L∂ψ̇ = Iz[ϕ̇ cos(θ) + ψ̇]                                           (5) 

 

Temporal variation of ϕ̇ is 𝑍 ̅-rotation around 𝑍-

axis or precession, 𝜓 (ψ̇) means pendulum rotation around 𝑍-axis or spin motion, From Equations (4) and (5): 

 ϕ̇ = 𝑝𝜙−𝑝𝜓 cos(𝜃)𝐼�̅� sin2(𝜃)                                                               (6) 

 ψ̇ = 𝑝𝜓𝐼�̅� − ϕ ̇ cos(𝜃)                                                          (7) 

 

 𝐸 is a quadratic form in canonical variables: 

 𝐸 = 12 {𝐼𝑥θ̇2 + [𝑝𝜓 cos(𝜃)−𝑝𝜙]2𝐼�̅� sin2(𝜃) + 𝑝𝜓2𝐼�̅� } − mgℓ cos(𝜃)    (8) 

 

where the “zero point” of potential energy is at the top of 

the pendulum. 

Let us introduce the following variables: 

 ℰ = 𝐸𝑚𝑔ℓ    ;   𝑃𝜙,𝜓 = 𝑝𝜙,𝜓√𝑚𝑔ℓ𝐼𝑥     ;     𝛼 = 𝐼𝑥𝐼𝑧                          (9) 

 

where 𝛼 is related to the shape of the pendulum and can 

have three values: 𝛼 > 1(ellipsoid moment of inertia is 

elongated or prolate), 𝛼 < 1 (ellipsoid moment of inertia 

is flattened or oblate), and 𝛼 = 1 (spherical ellipsoid), 

equation(8) becomes 

 ℰ = 12 {θ̇2 + [𝑃𝜓 cot(𝜃) − 𝑃𝜙 csc(𝜃)]2 + 𝛼𝑃𝜓2} − cos(𝜃) (10) 

 

EFFECTIVE POTENTIAL APPROACH 
The dominant force acting upon a PSP is the 

gravitational force; therefore, the net torque is zero 

(angular momentum constant) around the central point, the 

effective potential is introduced to reduce to the equivalent 

one-dimensional problem [20, 28]. 

To find an exact analytical solution to the PSP 

(problem with three degrees of freedom and three 

constants of motion), one makes evident θ̇2 from Equation 

(10): 

 θ̇2 = 2 cos(θ) − {[Pψ cot(θ) − Pϕ csc(θ)]2 + αPψ2} + 2ℰ(11) 

 

and by using the dimensionless variable, 

 ζ = 𝑧ℓ = cos(θ)                                                               (12) 

 

Equation (11) becomes: 

 𝜁̇2 = (1 − 𝜁2)(2ℰ − 𝛼𝑃𝜓2 + 2𝜁) − (𝑃𝜓𝜁 − 𝑃𝜙)2
         (13) 

 

Based on the new parameters 

 𝜀 = ℰ + 1−𝛼2 𝑃𝜓2𝑝1 = 𝑃𝜙𝑃𝜓                                            (14) 

 

Equation (13) becomes 

 𝜀 = �̇�22 + 𝑉𝑒ff(𝜁; 𝜀, 𝑝1, 𝑝2)                                               (15) 

 

Where 

 𝑉𝑒ff(𝜁; 𝜀, 𝑝1, 𝑝2) = 𝜁3 + 𝜀𝜁2 − (1 + 𝑝1)𝜁 + 𝑝22             (16) 

 

is so-called effective potential. 𝑉𝑒ff(𝜁; 𝜀, 𝑝1, 𝑝2) depends on 

the variable 𝜁 and three constants of motion 𝜀, 𝑝1, and 𝑝2 

(physical parameters adjustment). The roots of the cubic 

polynomial (16) will be interpreted as the turning points. 

By minimizing Equation (16), the critical points 

obtained are: 

 𝜕𝑉𝑒ff(𝜁;𝜀,𝑝1,𝑝2)𝜕𝜁 |𝜁=�̅� = 3𝜁2 + 2𝜀𝜁 − (1 + 𝑝1) = 0            (17) 

 

Varying the initial conditions 𝑝1, 𝑝2, and 𝜀-

parameter, the physical criterion for energies is through 

Equation (17), which has two real solutions: 

 𝜁m̅axmin = − 13 [𝜀 ± √𝜀2 + 3(1 + 𝑝1)]                               (18) 

 

due to 𝜁-axis being in the direction of the gravitational 

field, 𝜁m̅ax < 0 and 𝜁m̅in > 0. These points depend on 

energy and their momenta concerning 𝜙and 𝜓. 

Evaluating the effective potential (16) at the 

values (18), one gets 
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𝑉𝑒ff (𝜁m̅axmin ; 𝜀, 𝑝1, 𝑝2) = 𝜀maxmin                                           (19) 

 

with 

 𝜀maxmin = 127 [27𝑝22 + 9(1 + 𝑝1)𝜀 + 2𝜀3 ± (6 + 6𝑝1 +2𝜀2)√3 + 3𝑝1 + 𝜀2]                                                      (20) 

 

here, 𝜀max and 𝜀min are not upper bounds, but functions 

depend on thetotal energy of the system. From Equations 

(20), one obtains the conditions (physically accepted) that 

must impose on𝜀, 𝑝1, and , 𝑝2 to characterize the system. 

 

RESULTS AND DISCUSSIONS 

For the case with reduced energy 𝜀 = 0.4, 

reduced momenta 𝑝1 = 1, and 𝑝2 = 1, the PSP has an 

asymmetric motion as plotted in Figure-2 (solid line 

represents the behavior of effective potential 𝑉𝑒ff as a 

function of 𝜁). The critical points, projected on the 𝜁-axis 

are labeled by𝜁m̅ax = −0.9606 and𝜁m̅in = 0.6939, 

according to Equation (18). 

 

 
 

Figure-2. The asymmetric behavior of 𝜁-dependence of 

effective potential 𝑉𝑒ff. The two horizontal dotted lines 

indicate the values of 𝑉𝑒ff(𝜁m̅ax; 𝜀, 𝑝1, 𝑝2) and 𝑉𝑒𝑓𝑓(𝜁�̅�𝑖𝑛; 𝜀, 𝑝1, 𝑝2)with 𝜁m̅ax = −0.9606 and 𝜁m̅in =0.6939. The dashed line represents the physical solution 

for 𝜀 = 0.4, withinitial conditions 𝑝1 = 1 and 𝑝2 = 1. The 

two dash-dotted lines mean unphysical solutions. 

 

The two horizontal dotted lines indicate the 

values of 𝑉𝑒ff(𝜁m̅ax; 𝜀, 𝑝1, 𝑝2) = 2.4039 and 𝑉𝑒ff(𝜁m̅in; 𝜀, 𝑝1, 𝑝2) = 0.1389, according to Equations 

(20), respectively. The points labeled by𝜁𝑖 ,i = 1, 2,3 are the 

turning points, in other words, the pendulum has an 

oscillatory motion between these two points. The dashed 

line represents an acceptable physical condition (with a 

determined reduced energy𝜀). The dash-dotted line 

represents the unphysical solutions. 

From Figure-2, in order to have the motion 

always bounded in the region of physical interest, the 

parameters meet the following conditions: 

 

 

0 ≤ 𝜁m̅in ≤ 1;        −1 ≤ 𝜁m̅ax ≤ 0; 𝜀min ≤ 𝜀 ≤ 𝜀max                                                           (21) 

 

where 𝜀max/min does not mean upper/lower bounds but 

relative maximum/minimum points, respectively. The first 

two conditions of (21) are reduced to: 

 −1 ≤ 𝑝1 ≤ 2       12 (𝑝1 − 2) ≤ 𝜀 ≤ 12 (2 − 𝑝1)              (22) 

 

For energies 𝜀 > 𝜀maxor𝜀 < 𝜀min, we have 

unphysically solutions (there are no turning points) as 

shown by the dash-dotted lines corresponding to𝜀 = 0.5 

and 3.0 in Figure-2. 

 

Oscillation Modes 
In the phase space or space of all possible states 

(positions and their momenta), we will focus on the three 

oscillation modes: plane, conical, and elliptical. These 

modes depend on the value given to the reduced energy 

and reduced angular momenta. 

From the experimental point of view, 𝑃𝜙,𝜓is 

minus two orders of magnitude and 𝑝1about minus four, 

and cos(𝜃) ≈ 1. Therefore, the precession and the spin 

motion will besmall perturbations to the representative 

nutation motion. 

 

Plane Mode 
If the center of mass (CM) of the PSP is released 

near the surface of the Earth under the following initial 

conditions: from a starting position (𝜃 = 𝜃0) and zero 

transverse speed (�̇� = 0), from Equation (6), we have: 

 𝑃𝜙 = 𝑃𝜓 cos(𝜃) ≡ 𝑃𝜓𝜁                                                  (23) 

 

Equation (13) becomes: 

 𝜁̇2 = −2(𝜁3 + 𝜀𝜁2 − 𝜁 + 𝑝22 − 𝜀)                                 (24) 

 

the correspondent effective potential is: 

 𝑉𝑒ff(𝜁; 𝜀, 0, 𝑝2) = 𝜁3 + 𝜀𝜁2 − 𝜁 + 𝑝22                            (25) 

 

their critical points are: 

 𝜁m̅axmin = − 13 [𝜀 ± √𝜀2 + 3]                                              (26) 

 

with their corresponding energies: 

 𝜀maxmin = 127 [27𝑝22 + 9𝜀 + 2𝜀3 ± (6 + 2𝜀2)√3 + 𝜀2]     (27) 

 

The 𝜁-dependence of 𝑉𝑒ff [see Equation (25)] for 

this mode, in Figure-3, is plotted. The solid color lines 

show the behavior for:𝜀 = 1.5(green), 𝜀 = 1(blue), 𝜀 = −0.5 (red), and 𝜀 = −1 (black) The initial conditions 

to describe this mode are 𝑝1 = 0, and 𝑝2 = 0.01. The 

dotted vertical blue line is the projection on the ζ-axis,and 

the dotted horizontal blue line is on the potential(evaluated 
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at 𝜀 = 1), where the maximum critical point (𝜁m̅ax) is 

observed[see Equation (26)]. A similar description for the 

dotted vertical/horizontal blacklines is done for the 

minimum critical point (𝜁m̅in) at 𝜀 = −1. 

 

 
 

Figure-3. 𝜁-dependence of 𝑉𝑒ff for plane mode. The 

colored lines represent the behavior for the following 

conditions: 𝜀 = 1.5 (solid green line), 𝜀 = 1 (solid blue 

line), 𝜀 = −0.5 (solid red line), and 𝜀 = −1 (solid black 

line). The initial conditions are 𝜀 = 0.4,  𝑝1 = 1and  𝑝2 = 1. 

 

The horizontal red short dashed line intercepts the 

solid red line at three points, and only 𝜁1and 𝜁2, localized 

on the concave up curve, are the turning points. 

A bounded oscillatory motion is obtained with 

these initial conditions and reduced energies in the 

interval−1 < 𝜀 < 1. At𝜀 = 1, the pendulum is in its 

highest position, corresponding to the value 𝜁m̅ax = −1, 

and for 𝜀 = −1, in its lowest position (𝜁m̅ax = 1).For an𝜀-

value greater than 1, for example𝜀 = 1.5 (green line), the 

motion has not turned points as is showed by the 

horizontal green short-dashed line, in this case, the 

pendulum is restricted to be move in the finite 

interval−1 < 𝜁 < 1 or the pendulum has a bounded 

motion. 

Figure-4 displays the temporal derivative of𝜁as a 

function of 𝜁or phase diagram to visualize the dynamics of 

the plane mode. One point in this plane gives a well-

defined system state. Therefore, the curve for 𝜀 = −1is the 

only one that does not pass through the point (1, 0) 

because𝜁 has a value of one (𝜁m̅in = 1  indicates that the 

pendulum is in its lowest position or the pendulum is 

hanging in that position). 

For 𝜀 = −0.5 (red curve), the pendulum has an 

oscillatory motion (the trajectory, as the closed curve, is 

illustrated) between 𝜁1and 𝜁2 at the interval 0.5 < 𝜁 <1.For the blue curve (𝜀 = 1), 𝜁 has a value of minus one 

(𝜁m̅axindicates that the pendulum is in the highest 

position), and its unstable equilibrium position (any 

slightest disturbance makes the pendulum fall) is at 

(−1, 0)or bifurcation point. 

 
 

Figure-4. 𝜁-dependence of 𝑑𝜁/𝑑𝑡 or phase diagram for 

plane mode for some reduced energy values: the green line 

is for 𝜀 = −1.5, the blue line for 𝜀 = 1.0, the red line is 

for 𝜀 = −0.5, and the black line for 𝜀 = −1 (here 𝑝1 = 0, 

and 𝑝2 = 0.01). All curves pass through the point (1, 0). 

 

The representation of the unphysical solution is 

given by the green curve or𝜀 = 1.5. In this case, the 

pendulum has a bounded motion for−1 < 𝜁 < 1. 

 

Conical Mode 
The effective potential that characterizes this 

mode reduces to 𝑉𝑒ff(𝜁𝑠; 𝜀, 𝑝1, 𝑝2) = 𝜀min. Since the CM of 

PSP describes a uniform circular motion on a horizontal 

plane at a fixed height, Equation (13) is factorable in linear 

and quadratic factors. The two roots of the quadratic term 

are equal and correspond to the height at which the mass 

describes its circular path, while the third root (linear 

factor) is the unphysical solution. 

The characteristics of conical mode are: 

 �̇�(𝜏) = const                                                                 (28) 

 𝜁(𝜏) = 𝜁m̅in = − 13 [𝜀 − √𝜀2 + 3(1 + 𝑝1)]                   (29) 

 

where 𝜏 = Ω0𝑡 and Ω0 = √𝑚𝑔ℓ𝐼�̅� . For 𝜁(̅𝜏) constant and 

defining 

 𝜁(̅𝜏) = 𝜁𝑠, ∀𝜏                                                                (30) 

 �̇�(𝜏) = �̇�𝑠, ∀𝜏                                                               (31) 
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Integrating Equation (31): 

 𝜙(𝜏) = �̇�𝑠𝜏 + 𝜙0                                                           (32) 

 

with 𝜙0 some constant. 

Otherwise, the spin motion also remains constant, 

Equation (7) becomes: 

 ψ̇𝑠 = 𝑝𝜓𝐼�̅� − �̇�𝑠𝜁𝑠                                                              (33) 

 

Integratingψ̇𝑠 

 𝜓𝑠 = ψ̇𝑠𝜏 + 𝜓0                                                              (34) 

 𝜓0is another constant. Equations (29) − (34) are to solve 

this mode. 

The reduced energy 𝜀 for this mode as a function 

of height 𝜁𝑠 is 

 ε = 12𝜁𝑠 [1 + 𝑃𝜙𝑃𝜓 + 𝑃𝜓2  𝜁𝑠(𝛼 − 1) − 3𝜁𝑠2]                    (35) 

 

where 𝑃𝜙 and 𝑃𝜓 are constants. 

Figure-5 shows the behavior of 𝑉𝑒ff (𝜁, 𝑝1 , 𝑝2)in 

the range from −2to 1.5 for the conical mode with initial 

conditions 𝜀 = 0.8909, 𝑝1 = 0.6409,  and𝑝2 = 1.1677. 𝜁𝑠means a height independent of time. 

 

 
 

Figure-5. Behavior of effective potential as a function of 𝜁 for the conical mode. The initial conditions are 𝜀 = 0.8909, 𝑝1 = 0.6409, and 𝑝2 = 1.1677. 

 

There are two frequencies associated with the 

same height and spin motion: 

 Φ+ = 𝑃𝜓+√𝑃𝜓2 +4𝜁𝑠2𝜁𝑠                                                            (36) 

 Φ− = 𝑃𝜓−√𝑃𝜓2 +4𝜁𝑠2𝜁𝑠                                                            (37) 

 

withΦ+ > Φ−. Equation (36) represents counterclockwise 

frequency (as precession) and Equation (37) is clockwise 

direction (slow precession). 

There are two conical modes associated with both 

the same height 𝜁𝑠and the spin angular momentum𝑃𝜓the 

first, associated with the orbital angular momentum𝑃𝜙 

with frequencyΦ+and, the second, Φ−. The difference 

between the two modes lies in the orbital and spin angular 

frequencies that describe the CM circular trajectories. 

The spin motion, or how the pendulum is 

rotating, in dimensionless units, is given by: 

 Ψ̇𝑠 = �̇�𝑠Ω0 = 12 [𝑃𝜓𝑠(2𝛼 − 1) ± √𝑃𝜓𝑠2 + 4𝜁𝑠]                   (38) 

 

The phase diagram for this mode, for 𝜁𝑠 = 𝜁/ℓ, in 

Figure-6 is plotted. An energy 𝜀 = 9/8and an orbital 

angular momentum𝑃𝜙 = 7/4 are required to obtain a spin 

angular momentum 𝑃𝜓 = 0.5. The region of interest is 

around point (0.5,0 or the interval 0.476 < 𝜁 < 0.544. 

 

 
 

Figure-6. Phase diagram for the conical mode. The 

conditions are 𝜀 = 0.8909, 𝑝1 = 0.6409, and 

 𝑝2 = 1.1677. 

 

Elliptical Mode 

In this mode, the CM of the pendulum moves 

between two horizontal planes ζ = ζi (ζi are the turning 

points, i = 1, 2). The characteristics of elliptical mode are: 

 𝑝1 ≠ 0,       − 1 ≤ 𝑝1 ≤ 2        12 (𝑝1 − 2) ≤ 𝜀               (39) 

 

involving the physical condition: 

 𝜁3 < −1 ≤ 𝜁2 < 𝜁1 < 1                                                 (40) 

 

In Figure-7, the behavior of 𝑉𝑒ff as a function of 𝜁 

is displayed. The turning points 𝜁3 < 𝜁2 < 𝜁1 are shown 

on the horizontal axis, and the motion is bounded and the 

physical interest for −1 < 𝜁2 < 𝜁 < 𝜁1 < 1. For this 
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elliptical mode, −1.5 < 𝜁 < 1.2is the range with initial 

conditions 𝜀 = 0.6, 𝑝1 =  4.0 × 10−6 and 𝑝2 = 0.3625. 

 

 
 

Figure-7. ζ-dependence of 𝑉𝑒ff for elliptical mode with 

initial conditions 𝜀 = 0.6, 𝑝1 = 4 × 10−6, and 

 𝑝2 = 0.3625. 

 

The corresponding phase space is sketched in 

Figure-8. There are three roots of which𝜁1and 𝜁2are 

physical solutions, and 𝜁3 violates the ligature. The 

periodic motion is bounded, and the condition 𝜁2 < 𝜁 < 𝜁1 

is fulfilled, as shown in Figure-7. 

 

 
 

Figure-8. Phase diagram for the elliptical mode. The 

conditions are 𝜀 = 0.6, 𝑝1 = 4 × 10−6, and 𝑝2 = 0.3625. 

 

CONCLUSIONS 
By using the techniques of variation of canonical 

variables, based on the Lagrangian formalism, the 

effective potential is deduced which has a dependence on 

one variable () related implicit with nutation angle and 

three fitting parameters reduced energy (𝜀) and two 

reduced angular momenta (𝑝1 and 𝑝2). 

The asymmetric behavior of effective potential as 

a function of varies for the three modes (plane, conical, 

and elliptical) mode for the 𝜁-range, but the behavior is 

similar. 

The phase diagram shown that in the plane mode, 

the motion is on a plane, for the conical mode, it vibrates 

at a single point and in the elliptical mode, it moves quasi 

elliptical and these motions depends on the initial 

condition. 

An advantage of this approach was to obtain 

approximate analytical expressions to study the phase 

diagrams for these three modes. 
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