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ABSTRACT 

This paper describes the design and implementation of a fuzzy autopilot for a scale ship model using an 

Interpretable Inverse Fuzzy Controller. Initially, first and second order Nomoto models, neural network and a fuzzy 

mathematical maneuvering model are obtained of an unmanned surface vehicle from experimental input and output data 

gathered from the turning circle manoeuvre and zig-zag tests. Then, an adaptive fuzzy controller is generated from the 

inverse fuzzy maneuvering model and results of the implementation of the adaptive ship autopilot are showed. 
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INTRODUCTION 

Autopilots have become a key factor in 

improving maritime safety and reducing operating costs. 

The objective is the stabilization of the vessel within a 

predetermined range and under safe maneuvering 

conditions, leading to a decrease in travel time and, 

therefore, a decrease in fuel consumption. It is estimated 

that the reduction in sailing time that can be achieved with 

the use of an adequate autopilot steering control system 

can be in the range of 3 to 4%, while the reduction in fuel 

consumption, in the range of 3 to 6% [1]. 

The IMO (International Maritime Organization) 

through its Resolution A. 757(18), which establishes 

provisional rules on ship maneuverability, recommends 

the use of simplified mathematical models of ship models, 

being first and second order Nomoto models, one of the 

most used to describe, in a simplified way, the ship 

dynamics [2], [1], and for the analysis and design of ship 

autopilots [3], [4]. 

The dynamics of a ship can be described by six 

nonlinear differential equations based on the equations of 

moments and forces acting on a ship in three dimensions. 

To obtain a simplified model, couplings between the 

oscillating motions of the ship around the axes must 

initially be omitted. Subsequently, a linearization is 

performed around a selected working point and, after the 

elimination of the roll velocity, a simplified linear 

differential equation is obtained from which the equation 

of the second order Nomoto model is derived, which 

contains three time constants T1, T2, T3 and K is the gain 

constant, which depend on the derivatives of the 

hydrodynamic forces and moments with respect to the 

oscillation and wave velocity and the yaw rate [5]. Some 

authors use even more simplified versions, such as the 

first-order Nomoto model, although the latter is used in 

cases where the ship's heading and speed are kept constant 

[6]. 

Fuzzy models represent a recently widely used 

technique for modeling complex processes. Complex 

nonlinear systems can be approximated by the so-called 

Takagi-Sugeno (T-S) fuzzy model, in which the dynamics 

of the system can be captured by combining fuzzy sets of 

linear local dynamic models [7], [8]. 

Regarding the control strategy employed in 

autonomous surface vehicles, there is a wide range of 

proposals depending on the type of vessel, navigation 

conditions, vessel dynamics, course, speed, among others. 

Because the dynamic properties of a ship are not constant, 

the set points of the classical PID controller must also 

change, whether the autopilot is to serve to keep the ship 

on the predefined course, or for course changes, so 

techniques that allow such adjustments online, such as 

adaptive controllers, have been resorted to. In the case of 

small scale unmanned sailboats, it has been detected that 

the dynamics in course change is not the same at different 

speeds, so control strategies that allow good performance 

at different operating points (different speeds) have been 

used, such as fuzzy PID [9]. In this case, a first-order 

Nomoto model is used for the controller design. Recently, 

adaptive fuzzy controllers for heading control of maritime 

vessels have had a great boom [10], [11], some of which 

include artificial neural networks in the training process 

[12]. 

However, switching between different operating 

points can generate bounce problems, due to 

inconsistencies between the internal states of the controller 

and the control input to the process, as well as saturation 

in the actuator [13]. Recent proposed solutions to this 

problem incorporate known methods, such as sliding mode 

control, combined with artificial intelligence techniques, 

especially fuzzy logic, to perform better gain management 

to avoid the bouncing effect of the controller [14]. Other 

proposals combine command filtering technology and the 

MLP (Minimal Learning Parameter) approach, which 

greatly reduces the complexity of the controller, and 

includes fuzzy logic to approximate unknown nonlinear 

functions [15]. 

Some researchers have made comparisons of 

different types of controllers, such as PID, Linear 

Quadratic Regulator (LQR) and Model Reference 

Adaptive Control with Genetic Optimization Algorithm 

(MRAC-GA), for heading control of a ship, using first and 

second order Nomoto models. The results presented show 

that the MRAC-GA controller provides one of the best 

results in terms of maximum overshoot, response speed 

and settling time (Ts) to reach steady state [16]. 
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Another problem that arises in the design of 

autopilots is the nonlinear behaviors of the vessels. Some 

strategies have focused on the application of nonlinear 

control theory [17], [18], [19], while others make use of 

artificial intelligence techniques and expert systems [3]. 

This paper is organized as follows: Section II 

presents a general description of the ship model and the 

procedure for obtaining several models that describe the 

vehicle dynamics in the horizontal plane: the first and 

second order Nomoto models, and the fuzzy model. 

Section III describes the design of the fuzzy controller by 

reference model, using the inverse fuzzy control 

technique. Section IV presents the results of the 

implementation of the fuzzy controller in the vehicle for 

the tracking of previously determined courses. Section V 

presents the conclusions. 

 

DESCRIPTION OF THE MODEL 
The surface vehicle employed has a length 

overall of 2.46 meters, a maximum beam (width of the 

vessel) of 0.896 meters, a weight of 117 kilograms and a 

maximum speed of 9 knots. The vessel's draft (vertical 

distance from the waterline and the vessel's baseline) is 

approximately 0.15 meters. 

 

 
 

Figure-1. Surface vehicle employed. 

 

Initially, a second order Nomoto model was 

obtained, since it is one of the most used models for the 

design of ship autopilots. For the model identification 

process, standard tests defined by the IMO were used: the 

turning circle test, which consists of keeping the ship on a 

fixed course, then moving the rudder a certain angle and 

monitoring the dynamics of the ship's course to the change 

in rudder, and the zig-zag test, also known as Kempf 

maneuver, which consists of keeping the ship at a constant 

speed, in a straight line, for a certain time and, after 

reaching the equilibrium condition, the rudder is actuated 

by setting it at θ° and kept constant until the ship changes 
course to θ°. Then the rudder angle is changed to θ°, and 
so on. Due to the restrictions for the use of the vehicle, the 

model identification and validation experiments used the 

data from the evolutionary circle test, since there were 

enough tests performed with this test. 

 

 
 

Figure-2. Turning circle test. 

 

 
 

Figure-3. 10º/-10º Zigzag maneuver. 

 

The second order Nomoto model is given by the 

expression: 

 𝐺(𝑠) = 𝜓(𝑠)𝛿(𝑠) = 𝐾(𝑇3𝑠+1)(𝑇1𝑠+1)(𝑇2𝑠+1) = 𝐾𝑇3𝑇1𝑇2(𝑠+ 1𝑇3)(𝑠+ 1𝑇1)(𝑠+ 1𝑇2)                     (1) 

 

where Ψ represents the yaw or δ heading angle and 
represents the rudder angle. Decomposing into partial 

fractions and solving, we have that 

 𝜓(𝑡) = 𝐾(𝑇1−𝑇3)𝑇1(𝑇1−𝑇2) ∗ 𝑒− 1𝑇1𝑡 + 𝐾(𝑇2−𝑇3)𝑇2(𝑇2−𝑇1) ∗ 𝑒− 1𝑇2𝑡                     (2) 

 

In the Z domain we have 

 𝐺(𝑧) = 𝐴1(1−𝑒− 1𝑇2𝑇𝑧−1)+𝐴2(1−𝑒− 1𝑇1𝑇𝑧−1)
(1−𝑒− 1𝑇2𝑇𝑧−1)(1−𝑒− 1𝑇1𝑇𝑧−1)                            (3) 

 

𝐺(𝑧) = 𝐴1+𝐴2−((𝐴1∗𝑒− 1𝑇2𝑇𝑧−1)+(𝐴2∗𝑒− 1𝑇1𝑇))𝑧−1
1−(𝑒− 1𝑇1𝑇+𝑒− 1𝑇2𝑇)𝑧−1+𝑒−( 1𝑇1+ 1𝑇2)𝑇𝑧−2                  (4) 
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Where T is the sampling time, and 

 𝐴1 = 𝐾(𝑇1 − 𝑇3)𝑇1(𝑇1 − 𝑇2) ;     𝐴2 = 𝐾(𝑇2 − 𝑇3)𝑇2(𝑇2 − 𝑇1) 

 

Analogizing to a discrete second order model 

expressed by the following equation: 

 𝐺(𝑧) = 𝑏0+𝑏1𝑧−11+𝑎1𝑧−1+𝑎2𝑧−2                                                      (5) 

 

We have: 𝑏0 = 𝐴1 + 𝐴2 𝑏1 = − (𝐴1 ∗ 𝑒− 1𝑇2𝑇 + 𝐴2 ∗ 𝑒− 1𝑇1𝑇) 𝑎1 = − (𝑒− 1𝑇1𝑇 + 𝑒− 1𝑇2𝑇) 𝑎2 = 𝑒−( 1𝑇1+ 1𝑇2)𝑇
 

 

From which the coefficients of the second order 

Nomoto model, K, T1, T2 y T3, can be obtained as follows: 

 𝑇2 = 𝑇− 𝑇𝑇1−𝑙𝑛 (𝑎2)                                                                (6) 

 

If we do 

 𝑎1 ∗ 𝑒− 1𝑇1𝑇 = − (𝑒− 1𝑇1𝑇 + 𝑒− 1𝑇2𝑇) ∗ 𝑒− 1𝑇1𝑇
                       (7) 

 

We will have 

 𝑎2 ∗ 𝑒2𝑇𝑇1 + 𝑎1 ∗ 𝑒 𝑇𝑇1 + 1 = 0                                            (8) 

 

and 

 𝑇1 = 𝑇𝑙𝑛 (𝑥1,2)                                                                      (9) 

 

where 

 𝑥1,2 = −𝑎1±√𝑎12−4(𝑎2)(1)2∗𝑎2                                                   (10) 

 

The coefficient K is calculated from the discrete-

time model gain (z = 1), as follows: 

 𝐾 = 𝑏0+𝑏11+𝑎1+𝑎2                                                                   (11) 

 

And the T3 coefficient by 

 𝑇3 = 𝑏0𝑇1𝑇2𝐾                                                                       (12) 

 

With the results of the zigzag tests, we proceeded 

to identify the coefficients of the second order discrete 

model b0, b1, a1, a2, using the method of least squares, 

from which we obtained the coefficients of the Nomoto 

model K, T1, T2 y T3. The result obtained, in the Laplace 

domain, was: 𝐺(𝑠) = 𝑠𝜓(𝑠)𝛿(𝑠) = 0.004864𝑠 + 0.43640.04719𝑠2 + 1.614𝑠 + 1 

 

Where K = 0.4364, T1 = 1.5845, T2 = 0.0298 and 

T3= 0.0111. The normalized root mean square error was 

0.024136. Figure-4 shows the comparison of the actual 

heading and the model heading at a rudder angle change of 

-13º.  

 

 
 

Figure-4. Result of the Nomoto model (second order) 

identification process. 

 

Figure-5 shows the results of one of the 

validations performed, comparing the actual course change 

with a rudder change from 0º to +13º. The normalized root 

mean square error was 0.067182. 

 

 
 

Figure-5. Result of the Nomoto model (second order) 

validation process. 

 

With the same data, the first-order Nomoto model 

was also obtained expressed as follows: 
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𝐺(𝑠) = 𝑠𝜓(𝑠)𝛿(𝑠) = 0.4320.03719𝑠 + 1 

Where K = 0.432 and T = 0.03719. The 

normalized mean square error was 0.027324 

(identification process) and 0.071608 (validation process). 

 

 
 

Figure-6. Result of the Nomoto model (first order) 

identification process. 

 

 
 

Figure-7. Result of the Nomoto model (first order) 

validation process. 

 

A third model was obtained using neural network 

and the same variables used in the fuzzy model: three 

input variables, the values of the past outputs y(k - 1), y(k 

- 2) and the current input u(k) to predict the output y(k). 

The structure of the best neural network model obtained is 

shown in Figure-8. 

 

 
 

Figure-8. Structure of the best neural network model 

obtained. 

 

The normalized mean square error obtained was 

0.0009899 in the identification process and less than 

0.00191 in all validation experiments. 

Subsequently, we proceeded to obtain a fuzzy 

model with singleton consequents and triangular partitions 

with overlap at 0.5 and their modal values located, 

respectively, at the minimum and maximum of the 

universe of discourse [20], [21], fulfilling the 

characteristics of a Strong Fuzzy Partition (SFP) that 

satisfies the following semantic constraints [22]: 

distinguish ability; overlap at 0.5; coverage; normality; 

convexity and the number of fuzzy sets is no more than 9. 

For each triangular membership function, defined by each 

input variable, a singleton consequent is generated, which 

are estimated from the experiment data and using 

recursive least squares techniques. A rule is generated for 

each singleton consequent, as follows: 

 𝐼𝐹 𝑢𝑖  𝑖𝑠 𝐴𝑖𝑗  𝑇𝐻𝐸𝑁 𝑦𝑖𝑗  𝐼𝑆 𝜃𝑖𝑗                                          (13) 

 

Where 𝐴𝑖𝑗 represents the j-th linguistic value of 

the linguistic variable 𝑢𝑖   defined over the universe of 

discourse 𝑈𝑖, while que 𝜃𝑖𝑗 is the singleton associated to 

the linguistic value 𝐴𝑖𝑗. 

The output of the fuzzy system is given by 

 𝑌 = 𝑊𝜃𝑖𝑗                                                                       (14) 

 

Where W is defined by the following vector 

 𝑊 = [𝑢𝐴11(𝑥1𝑘) 𝑢𝐴12(𝑥1𝑘) … 𝑢𝐴1𝑗 (𝑥1𝑘) … 𝑢𝐴𝑛𝑗 (𝑥𝑛𝑘) ]           (15) 

 

Where n represents the n-th input variable and j 

represents the number of the membership function for 

each input variable. 

The fuzzy model obtained uses three input 

variables: the values of the past outputs y(k - 1), y(k - 2) 

and the current input u(k) to predict the output y(k). For 

the variables y(k - 1), y(k - 2), two triangular fuzzy sets 
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are defined in the range -360º to +360º. For the variable 

u(k), two triangular sets are also defined in the range -25º 

to 25º, corresponding to the operating range of the rudder 

angle used in the tests. The membership functions for each 

variable are presented in Figure-9. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure-9. Fuzzy partitions of the input variables (a) y(k-

1); (b) y(k-2); (c) u(k). 

 

For the model obtained we have 

 𝑊 = [𝑢1(𝑦(𝑘 − 1)) 𝑢2(𝑦(𝑘 − 1)) 𝑢1(𝑦(𝑘 − 2)) 𝑢2(𝑦(𝑘− 2)) 𝑢1(𝑥(𝑘)) 𝑢2(𝑥(𝑘))] 
 

And 

 𝜃 = [𝛿1 𝛿2 𝛿3 𝛿4 𝛿5 𝛿6]𝑇 

 

By employing the recursive least squares method, 

the following vector of consequents was obtained: 

 θ = [−721.867 710.537 − 720.464  709.135 − 49.267 37.937 ] 
 

The rule base of the fuzzy model can be 

expressed as follows: 

 

IF u(y(k-1)  is Negative THEN θ=-721.867 

IF u(y(k-1)  is Positive THEN θ= 710.537 

IF u(y(k-2)  is Negative THEN θ=-720.464 

IF u(y(k-2)  is Positive THEN θ= 709.135 

IF u(x(k)  is Negative THEN θ=-49.26 

IF u(x(k)  is Positive THEN θ=39.937 

 

When the fuzzy model receives the input data, the 

rule base is evaluated using equation (14). 

The normalized mean square error obtained was 

0.000069 in the identification process and less than 

0.00013 in all validation experiments. Figure-10 shows the 

results of the identification process, showing the actual 

course change at a rudder change from 0º to -13º and the 

course change estimated by the fuzzy model obtained. The 

root mean square error was 15.8216. 

. 
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Figure-10. Result of the fuzzy model identification 

process. 

 

Figure-11 shows the results of one of the 

validations performed, comparing the actual course change 

with a rudder change from 0º to +13º with the course 

change estimated by the fuzzy model obtained. The root 

mean square error was 11.4774. 

 

 
 

Figure-11. Result of the fuzzy model validation process. 

 

A comparison of each model's accuracy is shown 

in Table-1. 

 

Table-1. Normalized Mean Square Error. 
 

Model Identification Validation 

Nomoto model  

(first order) 
0.027324 0.071608 

Nomoto model  

(second order) 
0.024136 0.067182 

Neural Network 0.0009899 0.00191 

Our fuzzy model 0.000069 0.00013 

 

CONTROLLER DESIGN 

Our approach (Fuzzy model with singleton 

consequents) has the most accuracy among the models. 

Because that this model has been used for control system 

design. 

A model reference signal Yr was included to 

propose a smooth change of the heading angle, thus 

 𝑌𝑟 = 𝑊1𝜃1 + 𝑊2𝜃2 + 𝑊3𝜃3                                           (16) 

 

where 

 𝑊1 = [𝑢1(𝑦(𝑘 − 1)) 𝑢2(𝑦(𝑘 − 1))];   𝜃1 = [𝛿1 𝛿2]𝑇 𝑊2 = [𝑢1(𝑦(𝑘 − 2)) 𝑢2(𝑦(𝑘 − 2))];  𝜃2 = [𝛿3 𝛿4]𝑇    𝑊3 = [ 𝑢1(𝑥(𝑘)) 𝑢2(𝑥(𝑘))];   𝜃3 = [𝛿5 𝛿6]𝑇  
 

The vectors  𝑢1(𝑦(𝑘 − 1)), 𝑢2(𝑦(𝑘 − 1)), 𝑢1(𝑦(𝑘 − 2)), 𝑢2(𝑦(𝑘 − 2)), 𝑢1(𝑥(𝑘)) y 𝑢2(𝑥(𝑘)) 

represent the membership functions of each variable 

contain the membership degree of the partitions of each 

variable: y(k-1), y(k-2) y u(k) respectively. The first four 

vectors are known, as well as the reference signal Yr. The 

objective is to find the control signal that generates the 

desired change in rudder with the form of Yr, for which we 

will employ the fuzzy inverse control technique, as 

follows: 

 𝑊1𝜃1 = 𝑌𝑟 − 𝑊2𝜃2 − 𝑊3𝜃3                                           (17) 

 

Proceeding to calculate 

 u1(x(k)) =
Yrδ5−δ6 −  [u1(y(k−1)) u2(y(k−1)) u1(y(k−2)) u2(y(k−2)) ]|δ1δ2δ3δ4|

δ5−δ6 −δ6δ5−δ6                                                                               (18) 

 

Since we have a partition with triangular 

membership functions and overlap at 0.5, we have that 

 𝑢2(𝑥(𝑘)) = 1 − 𝑢1(𝑥(𝑘)) 

 

Knowing the membership function u1(x(k)), the 

value x(k), which is the rudder angle to be applied at time 

k, is determined. 

 

RESULTS 

The results of the response of the controlled 

system to different values of desired heading are presented 

below, with a reference model given by 𝑌𝑟(1 − 𝑒−8𝑡) 
Yr being the desired course. It starts with a 

heading of 0º (referenced to the ship's axis, stern to bow, 

where it is initially located), followed by an initial order to 

change course to +12º (port turn). Subsequently a turn to 

starboard is ordered to reach +5º, followed by a further 

turn to port to reach +17º. 

The inverse fuzzy controller has the same 

distributions as the fuzzy model obtained, for the variables 

y(k - 1), y(k - 2) and u(k), shown in Figure-4. The rudder 
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angle, or control signal, is calculated using equation (18), 

from which the value x(k) is derived. 

Figure-12 shows the results achieved by the 

system with the fuzzy controller under the ordered course 

changes. The normalized mean square error was used as a 

metric, reaching in this experiment a value of 0.0323. 

 

 
 

Figure-12. Vessel response with fuzzy controller to course 

change requests. 

 

CONCLUSIONS 
This paper initially presents the modeling of the 

dynamics of a surface vehicle in the horizontal plane using 

identification techniques to generate first and second order 

Nomoto models, widely used for the design of ship 

autopilots. The data was taken from one of the standard 

maneuverability tests defined by the International 

Maritime Organization, such as the evolving circle test, 

using the normalized mean square error as a metric to 

determine the accuracy. Both models showed high 

accuracy, both in identification and validation. 

Subsequently, the fuzzy modeling of the system 

was presented, with a triangular partition for each of the 

input variables and an overlap of 0.5. This in order to 

guarantee the interpretability of the system and the 

subsequent application of the fuzzy inverse control 

strategy. The output sets of the model are of the singleton 

type. 

Finally, we showed how to obtain the inverse 

fuzzy control, with reference model, which shows a good 

result for tracking a previously defined trajectory, with 

course changes to port and starboard. 
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