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ABSTRACT 

A large part of the industrial processes, when entering competitiveness, must be subject to flexibility so that 

related aspects can be adapted according to demands at the production level as well as current technological trends. One 

strategy to appropriate these processes is to adopt the use of control techniques such as Artificial Neural Networks (ANN) 

inspired by the biological neural networks of the human brain; its advantage is the ability to provide abstract dynamic 

features from a series of experimental data. Under this concept, an ANN controller system applied to a test hydraulic 

system was developed, which was compared with a classic PI strategy. Said comparison at the simulation level presented 

satisfactory results, demonstrating the quality and optimization in the processing, emulation, and control of a physical 

system with non-linear characteristics. The performance of the networks is noteworthy, the Tau response times for both 

controllers when the level of the tank decreases are similar, however, the settling time of the neural network was between 

20% and 40% faster than the controller PI. The presence of overshoot above 20% was identified by the PI control in 

response to changes in the setpoint for the size of the tank level. 
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1. INTRODUCTION 

From the importance and influence in relation to 

the quality of technology in the industry, the use of 

embedded simulation level systems that have as a function 

more complex tasks to human perception has been 

highlighted [1], therefore, quality is required to understand 

the control of physical variables at a dynamic level. 

Recent advances have allowed directing the efforts in the 

field of electronic control to solve analyze and emulate 

high-precision dynamic characteristics. The industry over 

time has been the target of classical control methods such 

as PID, where no tolerance and the need for rapid stability 

are key study requirements for the control area. However, 

the challenges to linear and nonlinear systems require new 

alternatives that lead to the solution to these challenges. 

An alternative solution is the provision of artificial neural 

networks, for our case study, applied to hydraulic tank 

systems, whose purpose is to complement the 

shortcomings of classical control methods. This paper 

presents the results at the exploratory research level under 

a simulation and comparison of a new control method as 

an alternative resource to the classical control techniques 

applied to a vertical tank-type nonlinear hydraulic system. 

 

2. SMART CONTROL 

The current demands of physical systems have 

generated the increased leverage of automation and control 

with a great diversity of functions other than the basic 

ones of task execution and process monitoring [2]. The 

Industry 4.0 trend is driving a series of techniques 

developed mainly at the level of artificial intelligence that 

seek to solve control problems that cannot be tackled by 

traditional methods [3]. The Industry 4.0 trend is driving a 

series of techniques developed mainly at the level of 

artificial intelligence that seek to solve control problems 

that cannot be tackled by traditional methods [4]. 

 

2.1 Neural Networks (NN) 

Neural Networks is a technology developed in 

software and hardware, in which systems can be built that 

is capable of learning, adapting to different conditions, or 

predicting future states through databases. These 

techniques used are developed to face problems that are 

commonly solved by human beings and were difficult for 

machine logic systems. Their operation is based on a large 

amount of data in parallel processing that interconnects 

each one. Neural networks are used for prediction, data 

mining, pattern recognition, and adaptive control systems, 

see Figure-1. Also, they can be used with other tools such 

as statistics, algorithms, fuzzy logic, and others [5]. 

Artificial neural networks have several 

definitions, some short and others explaining in detail, 

such as: 

 A new form of computation, inspired by biological 

models.  

 A mathematical model composed of a large number of 

procedural elements organized in levels.  

 A computer system is composed of a large number of 

simple, highly interconnected process elements, 

which process information using their dynamic state 

in response to external inputs.  

 Artificial neural networks are massively parallel 

interconnected networks of simple (usually adaptive) 

and hierarchically organized elements, which attempt 
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to interact with real-world objects in the same way as 

the biological nervous system does [6]. 

 
 

Figure-1. Artificial Neural Network [7]. 
 

3. HYDRAULIC EXPERIMENTAL STUDY SYSTEM 

The hydraulic system shown in Figure 2 is 

composed of a tank with a base radius of 19 [cm] and a 

maximum filling height of 45 [cm]. The variable height is 

measured with an ultrasonic sensor and the liquid outlet is 

adjusted by a 1" proportional solenoid valve with a 

maximum flow area of 160 µm
2
 which reaches the 

reservoir tank. For the inlet flow, a reservoir tank of 

approximately 200 [mL/sec] is provided using a hydraulic 

centrifugal pump and a ½" piping arrangement with 

manual valves to establish this inlet flow. 

 

 
 

Figure-2. Experimental hydraulic system. 

 

For the instrumentation of the tank, the 

characteristics of the hydraulic system were considered, 

emphasizing the use of electronic elements, such as a 

solenoid valve with Arduino one auxiliary board, which 

with a potentiometer is in charge of giving the opening 

point, through a PWM signal amplified to 10 [V] by 

means of an L298N H-bridge module as shown in Figure-

3. 

 

 
 

Figure-3. Arduino Uno auxiliary circuit with L298N. 

 

3.1 Analytical Model of the Hydraulic Tank System 

For this system whose behavior is nonlinear, 

Figure-4, an inlet flow "Qin" was defined where it affects 

the opening "a1" of valve 1 to a cylindrical tank of height 

"h" and base area "A", as well as an outlet flow "Qout" 

where it affects the opening "a2" of valve 2. 

 

 
 

Figure-4. Schematic diagram of the study 

hydraulic system. 

 

This system is represented by the variables in the 

liquid flow, where the amount of liquid stored in the 

cylindrical tank and the resistance at the outlet orifice will 

be equal to the inlet flow minus the outlet flow, the mass 

conservation principle, as shown in equation 1. 

 Volumen =  Area ∗  height = input flow − output flow        

(1) 

 

Assuming that the outflow from the tank has a 

non-linear behaviour we arrive at equation 2, where "A" is 
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the area of the base, "g" is gravity, "k" is a constant of the 

valve, and "h" is the head. 𝐴 𝑑ℎ𝑑𝑡 = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 = 𝑄𝑖𝑛 ∗ 𝑎1 − 𝑘 ∗ 𝑎2 ∗ √2𝑔ℎ    (2) 

 

Under Taylor's linearization, the following 

equation presents the analytical transfer function, which 

will be used for the development of the controllers and 

subsequent studies. 

 𝐺(𝑠) = 𝑘√2𝑔ℎ´𝐴𝑆+𝐶  𝑑𝑜𝑛𝑑𝑒 𝐶 = 𝑘𝑎´2√2𝑔2√ℎ´                                  (3) 

 

In view of the above, the requirements to be met 

by the instrumentation system were identified as follows: 

 

 The signals to be received have amplitudes of 4-20 

[mA] and 0-10 [V], using an analog instrumentation 

channel. 

 The configuration given to the signal conditioning 

was oriented towards low-range voltages and must 

have an analog/digital conversion for acquisition by 

the Raspberry Pi 3B+ development system (Patil & 

Bhole, 2019), whose analog pins handle logic levels 

between 0 and 3.3 [V]. 

 Data acquisition must be controlled in such a way that 

it is possible to pause and restart the data acquisition 

process. 

 

With these requirements established and the 

characteristics of the Raspberry Pi 3B+, an 

instrumentation system was designed consisting of a 

conditioning stage and an analog/digital converter to 

deliver the signals to the board, as well as a graphical user 

interface for the visualization and storage of the 

experimental data. Figure-5 shows the simplified block 

diagram of the proposed instrumentation system. 

 

 
 

Figure-5. Simplified block diagram of the developed 

instrumentation system. 

4. DESIGN OF THE CLASSICAL PI CONTROLLER  

    AND NEURAL NETWORK CONTROLLER FOR  

    THE HYDRAULIC SYSTEM 

 

4.1 Classic PI Controller 

Having the transfer function product of the 

linearization, equation 3, we proceeded to the design of the 

classical PI controller, which has the characteristic of 

eliminating the error and its viability to respond to large 

disturbances such as pressure, flow, and liquid level. The 

pole assignment method was applied manually to solve the 

direct nonlinearity of the plant. The transfer function is 

presented in equation 4 as the modifiable or perturbed part 

of the plant, based on the block diagram shown below: 

 

 
 

Figure-6. Block diagram of the system to be controlled. 

 

Where block C(s) represents the controller and 

G(s) represents the plant. From the previous diagram, a 

transfer function was designed that allows having as an 

analysis objective the reduction of the accommodation 

time, with reductions in the order of 45%. The transfer 

function of the classical PI controller is presented in 

equation 4 below. 

 𝐶(𝑆) = 1,416 ∗ 167,5∗𝑆+1167,5∗𝑆                                                (4) 

 

4.2 Neural Network Controller 
For the design of the neural network, the 

differential equation obtained in the modeling of the 

system was considered the objective function. During the 

controller design process, a recurrent neural network 

structure was used, (see Figure-7), whose structure is 

defined for one input and one output, being the perturbed 

variable the opening, and the variable to be controlled the 

height, respectively.  

 

 
 

Figure-7. Mathematical structure of the neural system. 

 

Subsequently, a file was created containing the 

neural network to be used along with the system or plant 

to be controlled, shown in Figure-8. 
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Figure-8. Plant controlled by neural network. 

 

Before training our controller neural network, a 

neural network was trained to copy the dynamics of the 

system, using the plant identification tool, to record the 

parameters of the neural network that would copy the 

dynamics of the plant. As a result of the training, we can 

observe in Figure-9, the adaptability of the neural network 

found against the reference model of the plant against 

some perturbations in its input. As can be seen in Figure-

10, the neural network took a portion of the plant data to 

perform validation, having an input, performing the 

imitation, and obtaining an output with a minimum error 

in the order of 0.5 x 10-5. Finally, the training data for the 

controller neural network was generated as shown in 

Figure-10. 

 

 
 

Figure-9. Neural network response vs. plant model on 

training data. 

 

 
 

Figure-10. Data generated for controller RN training. 

 

5. EXPERIMENTAL RESULTS 

Simulations were performed for variations in the 

inflow and external disturbances to the hydraulic system, 

observing the behavior of the head and opening, as well as 

the response of the zero head to the equilibrium head of 

the system in an uncontrolled and controlled manner. 

 

5.1 Variation of Tank Inlet Flow with Steps 

Considering the model of the system previously 

obtained, the due simulation was executed to alter the inlet 

flow. This model was proposed under the effect of 6 

perturbations, applied with a separation of 800 seconds 

between perturbations. For the first perturbation, the inlet 

flow is increased by 50%; in the second perturbation, the 

same proportion of the flow that was increased in the 

previous perturbation is decreased. In the third 

perturbation, the flow is increased by 35%, for the fourth 

perturbation the reduction is made in the same proportion 

applied in the previous perturbation. In the fifth 

perturbation, the flow was increased by 15%, and for the 

sixth perturbation, the same proportion was reduced, 

reaching again the initial flow. 

For the test of the neural network controller, a 

Matlab script similar to the one used for the testing of the 

classical PI controller was created. In this script, the tank 

constants already known in a past objective are specified, 

and the times at which the moments of change in the 

reference for the simulation of the neural network 

controller are specified. Whose answers were exported 

from Matlab work, where the data were presented, 

showing the dynamics of the controlled tank, see Figure-

12, under the effect of a neural network. 
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Figure-11. PI controller response to perturbations in step input flow. 

 

Considering the model of the system, the 

simulation, data acquisition and graph shown in Figure-13, 

under the effect of a neural network in the presence of 6 

input disturbances in the input flow, are shown below. 

 

 
 

Figure-12. Simulations of the controlled and uncontrolled system for a natural response from 0 

to equilibrium point. 
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Figure-13. RN controller response to disturbances in inlet flow by steps 

 

5.2 Comparison of Dynamics in Controller Responses 

Once the two controllers were obtained, they 

were compared, taking into account the following data to 

be evaluated: 

 Time (𝑇𝑎𝑢): The time in which 63.2% of the final 

value is reached.  

 𝑡𝑝 (peak time): The time at which the maximum peak 

occurs.  

 𝑡𝑠 (settling time): The time in which the signal 

reaches 98% of the final value. 

 𝑀𝑝 (maximum overshoot): is the magnitude at which 

the first overshoot occurs at peak time. 

 

Figure-14 shows both controllers and their 

perturbations, we can see that the neural controller is not 

the same as the PI level when a perturbation is performed; 

in fact, it is almost half, and its response times to return to 

the reference level are faster. 

Figure-15 shows the behaviour of the openings and it can 

be seen that the NN controller acts faster on the valve, not 

allowing the tank level to increase or decrease too much at 

that moment with respect to the reference level. 

 

 
 

Figure-14. Response from both controllers. 
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Figure-15. Openness response in controllers. 

 

The neural network for +/-50% disturbances has a 

Tau 25% faster and a settling time Ts 34% faster than the 

PI controller. The neural network for +/-35% perturbations 

has a Tau 17.6% faster and a settling time Ts 30% faster 

than the PI controller. The neural network for +/-15% 

perturbations has a 25.5% faster Tau and 22% faster 

settling time Ts than the PI controller. No controller was 

shown to have MP spikes and overshoot. Positive 

disturbances tend to have longer response times than 

negative disturbances. 

 

CONCLUSIONS 
The analytical model obtained showed system 

dynamics similar to that obtained empirically, with a 

difference in its Tau response time of approximately 8 

seconds; however, its equilibrium level is higher by 

approximately 2 centimeters.  

The Tau response times for both controllers as the 

tank level decreases are similar; however, the settling time 

of the Neural Network is between 20% and 40% faster 

than the PI controller.  

When the liquid level is decreased, the Tau times 

for both controllers are similar. The difference occurs in 

the settling time, in which the neural network is between 

60% and 78% faster depending on the distance interval 

between the reference point and the desired level, 

compared to the PI controller. 
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