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ABSTRACT 

Prostate cancer is the most frequent cancer in the men population, and early detection is critical in order to lower 

mortality rates from the disease. With its superior soft-tissue contrast, magnetic resonance imaging (MRI) has become the 

imaging method of choice for the localization of PCa. In terms of diagnosing PCa of the transition zone, T2-weighted 

images are the most useful tool among the several MRI modalities. In this proposed model, the PCa is classified based on 

the T2w MRI data. The proposed model is a deep learning approach, which includes the deep transfer learning models for 

the classification of PCa. For classifying the data, the different variants of VGG-16, VGG-19, and MobileNet-v3Large 

transfer learning models are used. These models are modified using different optimizers for varying the learning rate. 

Optimizers like Adam, AdaMax, SGD, RMSprop, and Ftrl are used in this research. For evaluation, the ampMRI dataset 

with 845 patient records with unique "UCLA" scores of the ROI was used for multi-class classification. For performance 

analysis, accuracy, sensitivity, specificity, precision, and F1 score are computed based on the classification. Finally, 

according to the results, the performance was compared among the different proposed models for validation. The proposed 

models optimized using the Ftrl optimizer have obtained better performances with 93.31% accuracy, 93.92% accuracy, and 

95.27% accuracy for VGG-16-Model-04, VGG-19-Model-04, and MobileNet-v3 respectively. 
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I. INTRODUCTION 

Prostate cancer (PCa) is the most frequent cancer 

in men today, with one in every six men developing the 

disease at a certain stage in their life. It has been shown 

that early identification and precise diagnosis of cancer 

could enhance the survival of cancer while also lowering 

treatment costs [1]. According to the Global Cancer 

Statistics 2020 report, PCa is the second leading cancer 

among men in the globe, following lung cancer. PCa, in 

contrast to lung cancer, which affects 14.3 percent of the 

world's population, affects 14.1 percent of men globally 

and has a death rate of 6.8 percent, according to the World 

Health Organization [2]. 

Earlier, TRUS (transrectal ultrasound) was the 

primary imaging tool used to assess individuals suspected 

of having PCa. However, this technique has a number of 

disadvantages, including low sensitivity and specificity 

rates, which are particularly prevalent in the lesions of the 

transition zone. More recently, magnetic resonance 

imaging has proven improved accuracy in diagnosing and 

is becoming a medical standard of care for individuals at 

risk of developing PCa [3]. In recent years, since the 

emergence of multi-parametric MRI (mpMRI), the 

imaging of PCa has made significant progress. It is 

possible that computer-aided quantitative analysis of 

prostate MRI will enhance PCa detection and will aid in 

the mpMRI interpretation standardization. Due to the 

superior soft-tissue contrast provided by MR imaging, it 

turned out as the imaging method of selection for the 

localization of PCa. In addition to higher-resolution T2-

weighted (T2W), the mpMRI provides dynamic contrast-

enhanced imaging (DCE-MR), diffusion-weighted 

imaging (DWI), and magnetic resonance spectroscopy 

(MRS). The use of mpMRI has been shown to be an 

effective approach for localizing high-risk PCa [4]. 

In general, there are four major MRI imaging 

modalities that are utilized in diagnosing PCa. T2W, DCE, 

DWI, and MRS are some of the techniques available. 

T2w-MRI is the most fundamental MRI imaging modality, 

and it works by constructing the grayscale images of the 

scanned item by utilizing the transverse relaxation time 

T2. T2w-MR images have proven to be an important 

imaging modality for noninvasive PCa diagnosis as their 

popularity and availability among healthcare professionals 

have grown in recent years. Using this modality, the 

primary advantage is that it enables visual differentiation 

between normal prostatic and malignant tissues by varying 

the homogeneity and intensity of the images. Its second 

major advantage is that it computes the data on the zonal 

structure of the prostatic gland, which is another major 

advantage [5]. 

T2w images are the most effective way to 

visualize the anatomy of the prostate gland. mp-MR 

imaging protocol, the capture of higher-resolution T2-

weighted images of the prostate is the first and most 

significant stage in the procedure. When it comes to 

detecting PCa in the transition zone, T2w magnetic 

resonance imaging has been touted as an accurate 

approach [6]. T2w MR images are very useful in 

predicting the pathological stage of PCa as well as the 

extent of extracapsular expansion. Because T2w MR 

images are critical in the diagnosis and stage grading of 

PCa, T2w is the foundation and most crucial sequence in 

computer-aided diagnosis and staging systems for PCa. 

This research proposed the utilization of deep transfer 

learning (DTL) models based on deep learning 

architecture to classify PCa using T2w-MRI images. In 
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T2w images, the cancer region of interest (ROI) has many 

darker pixels than the brighter pixels, whereas the normal 

tissue ROI has many brighter pixels than darker pixels [7].  

For this work, the deep transfer learning (DTL) 

technique was chosen above other machine-learning 

algorithms because of the remarkable classification 

accuracy of pre-trained models. Additionally, the pre-

trained model saves time consumption by evading the 

issue of retraining and testing the approach weights from 

the beginning of the training process. Using T2w-MRI 

images, this work recommends the use of DTL models 

such as VGG-16, VGG-19, and MobileNet-v3 for the 

classification of PCa. Multiple alternative optimizers, such 

as Adam, AdaMax, SGD, RMSprop, and Ftrl, are used to 

train each of these DTL models, with appropriate learning 

rates, in order to reduce the generalization factor, which is 

an important concern. 

 

 
 

Figure-1. High resolution T2w MRI of PCa (a) Axial view; (b) Coronal view [21]. 

 

The VGG-16, VGG-19, and MobileNet-v3 

models, all of which are pre-trained networks, were 

utilized in this research to classify the PCa. VGG is an 

abbreviation for Visual Geometry Group, and it is the deep 

CNN architecture with numerous layers that is standard in 

the industry. The term "deep" refers to the number of 

layers in a VGG-16 or VGG-19, which are respectively 

composed of 16 and 19 convolutional layers, respectively. 

Image analysis capabilities in many popular mobile 

applications are powered by MobileNet-v3, which is the 

third iteration of the architecture that underpins them. 

When it comes to classification tasks, MobileNet-v3 is 

both faster and more accurate than MobileNet-v2. 

The rest of the work is presented in the following 

sections. Section two presents the related works for the 

research that covers the analysis of similar works. Section 

three presents the proposed research models, section four 

presents the results and analysis of the proposed models, 

and finally, section five presents the conclusion and future 

works. 

 

2. RELATED WORKS 

The 3D sliding window approach was 

implemented in [8] in relation to incorporating the 3D 

contextual spatial information provided by the MRI series 

while maintaining the 2D domain complexity and utilizing 

3D data for PCa detection. This work proposed a deep 

convolutional encoder-decoder framework for segmenting 

and classifying the prostate as well as its malignant lesions 

and anatomical structure at the same time. It was not only 

conceivable, but also useful, to include 3D spatial 

information into a 2D multi-channel strategy using 

multiple channels. This fusion method enables the 

insertion of 3D context information into the 2D-based 

pipelines, which otherwise would not be possible. The 

encoder-decoder networks used for the segmentations of 

volumetric clinical images produce better outcomes than 

the previous method. Because of the restricted availability 

of large annotated datasets, it is not possible to compare 

and validate the results. 

When it comes to PCa, the grading system can be 

thought of as ordinary class classification problems. The 

use of VGG-16 CNN and ordinary class classifier with J48 

as the basis classifier in [9] was used to develop a method 

for grading PCa from mpMRI images. Using the kappa 

score of moderate quadratic weights, this approach could 

classify PCa belonging to distinct grade groups, indicating 

that it was effective. Some exact criteria were used in this 
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work to demonstrate that the Gleason grading does not 

allow for the low-aggressive malignancies recognition, 

and the cancer grading subjectivity results in important 

intra and inter-observing variability. The diagnosis 

accuracy achieved by this method needs to be improved 

even further in relation to being used efficiently in clinical 

settings. 

The segmentation and classification of PCa were 

accomplished using a customized CNN architecture, 

which was created in [10]. With the ultimate goal of 

determining whether DTL, test-time augmentation, and 

unsupervised pre-training can improve pixel-by-pixel 

classifications, this model was combined with 

sophisticated approaches for handling classification issues 

(Non-cancer vs. Cancer). A considerable improvement in 

CNN performance was achieved by incorporating test-

time augmentations with DTL or unsupervised pre-

training. It would have been better if the size of the 

training and testing datasets had been increased in order to 

enhance the generalizability of the model. 

In terms of automatic CAD analysis of PCa with 

mpMRI, deep learning appears to be the most promising 

methodology. In [11], the optimized patch-based DCNN 

system based on VGG-Net was constructed, and an 

improved prediction approach was included in the 

prediction phase in order to increase the prediction 

accuracy of the system. The number of images used for 

training was below 200, according to the researchers. 

More data would lead to more accurate results. When it 

came to diagnosing PCa from non-cancerous images, the 

model produced underfitting and overfitting results, 

respectively. 

According to [12], the CNN and LADTree 

classifiers were proposed for evaluating PCa based on 

MRI data. This methodology was used to automate the 

gradings of PCa into five separate graded groups based on 

the Gleason grading groups, and it was successful. MRI 

images with T2 weighting, apparent diffusion coefficient 

(ADC), and high B-value diffusion weighting were 

employed in the evaluation. This model was unable to 

predict any cancers in the GG 4 grades. The inability to 

classify GG 4 lesions was due to an imbalance between 

classes and a lack of training data for the classification. 

The problem of class imbalance may have been resolved 

by employing any number of data augmentation 

approaches to increase the amount of training data 

available. 

Prostate MRI is a technically challenging 

procedure that necessitates great image quality in order to 

achieve its full diagnostic potential. Image quality could 

be improved through the use of the automated approach 

for identifying diagnostically poor images, for example. A 

CNN-based analysis pipeline to classify the prostate MRI 

images quality was developed in [13]. This model 

exhibited great accuracy in prostate MRI classification of 

image quality on the individual-slice basis and nearly 

flawless accuracy in classifying whole sequences when 

applied to the entire dataset. The sample size for training 

in this study was rather small, which was a restriction that 

had the effectual performances of the model. 

According to [14], a two-stage classification 

model for the identification of PCa has been presented. 

Extraction of characteristics for further diagnosis was 

accomplished through the use of trained models such as 

MobileNet and DenseNet. To make the forecast, the 

features gathered from these models were piled on top of 

one another. The stacked characteristics retrieved from the 

models were fed into the two-stage classification system, 

which aids in the classification process by making it more 

efficient. The logistic regression model was employed as 

the meta-classifier, and the features were fed into it in a 

pipelined way in order to acquire the corresponding 

outcomes. In this case, the logistic regression model serves 

as the main classifier, and the classification output was 

provided by the model. 

Deep learning approaches have significantly 

enhanced the performance of prostate MRI analysis and 

classification in recent years. It was investigated in [15] if 

it was possible to utilize the Semantic Learning Machine 

(SLM) neuro-evolution algorithm for replacing the 

backpropagation method usually utilized in the last fully 

connected (FC) layers of CNN instead of the 

backpropagation algorithm. The multispectral MRI non-

contrast-enhanced sequences from the data sets were 

evaluated in order to make a determination. It was critical 

to emphasize the significance of the data obtained by SLM 

without first training the CNN. This was a significant 

benefit over other current techniques and procedures 

because the SLM was not constrained or based on 

backpropagation, which is a significant advantage over 

other existing models and approaches. 

In [16], a Textured-deep learning technique was 

proposed for the automatic PCa classification using 3T 

mpMRI, which was based on textured deep learning. It has 

been demonstrated that a texture-based CNN model for 

automatic PCa classifications of the prostate lesions was 

created using data from three-tesla (3T) MRI along with 

wholemount histopathology (WMHP) correlation. 

Following the detection and contouring of a lesion as the 

segment of the clinical interpretations, this deep learning 

model was created in order to additionally enhance the 

classifications of PCa for every positive MRI result in the 

future. This work was primarily concerned with 

demonstrating the benefits of combining GLCM-based 

texture data with CNN in the classifications of PCa. 

Using T2W image-derived textural features, the 

potential for quantitative assessments of peripheral zones 

PCa aggressiveness was investigated in [17]. In this study, 

tumor volumes interpreted based on WMHP were used to 

construct the T2W intensity and ADC histograms, as well 

as T2W textural characteristics. Using Spearman 

correlations, this work is able to determine the relationship 

between textural characteristics and PCa grade sets. 

Textural aspects of T2W might have the potential to 

enhance PCa classifications in multicenter settings, 

according to recent research findings. 

 

3. PROPOSED METHODOLOGY 
In this proposed research, the PCa is classified 

based on the T2w-MRI data using DTL models. The 
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proposed models are based on DL architecture, which is 

used for the classification of PCa. From the dataset, a 

subset of MR Images of 845 patient records with a unique 

"UCLA" score of the ROI was used for multi-class 

classification. For classifying the data, the three different 

transfer learning models are used and these DTL models 

were trained using various optimizers for varying the 

learning rate. Finally, based on the results, the 

performance was compared among the different proposed 

models for validation. 

 

A. VGG 16 and 19 

Deep learning is widely regarded as having the 

ability to perform extremely accurate medical image 

classification, and this is widely acknowledged. In contrast 

to standard machine learning techniques, deep learning has 

several important advantages. The most notable advantage 

is that it eliminates the need for manual feature extraction 

because deep learning is capable of automatically 

extracting features and then classifying PCa. A key 

premise of DTL was for training a pre-trained CNN to 

utilize the smaller data set from a diverse problem to learn 

new image depictions rather than using the larger dataset 

from the same problem. DTL is a system for machine 

learning architecture; it was not a machine learning model 

or approach from a technical view. This design technique 

is typically used for models that have already been trained. 

Deep Evolution Neural Networks (DENNs) are used to 

train these pre-trained models. This technique, which is 

used in DL, includes the initial training of the CNN 

utilizing larger-scale training data sets for the purpose of 

solving a classification problem. In Figure 2, the 

architectures of the VGG-16 and 19 models have been 

presented. 

As depicted in Figure 2, VGG is composed of six 

primary segments, the majority of which are multi-

connected convolutional layers and FC layers combined. 

The dimension of the convolutional kernels is 3*3. 

Generally, every layer was concentrated at 16~19, with 16 

being used for the VGG-16 and 19 being used for the 

VGG-19 models. The model is composed of largely 

connected FC and convolutional layers, which allows for 

improved feature extractions as well as the utilization of 

Maxpooling (instead of averaged pooling) for 

downsampling prior classifications using the SoftMax 

activation functions, which improves the overall 

classification performance [18]. 

In the VGG-16 algorithm, the input image is 

routed through an array of convolutional layers each with 

a receptive field of three. The stride of the convolution is 

taken to be one pixel. Spatial pooling (downsampling) is 

accomplished by the use of five max-pooling layers with 

strides equal to two. Max-pooling layers are applied after a 

few of the convolution layers, and the operation was 

carried out over the 22-pixel window. Following the sets 

of conv layers, there were three FC layers, each of which 

has channel sizes of 4096, 4096, and 1000 bits. During the 

FC layers, every neuron receives information from the 

activation of the neuron in the layers above it. 

The expression for the downsampling layer is 

given in the following equation (1), 

 𝑋𝑝𝑗(𝑛) = 𝑓(𝜏𝑗𝑛𝑑𝑜𝑤𝑛(𝑋𝑗(𝑛−1)) + 𝑏𝑗(𝑛))                  (1) 

 

According to equation (2), the activation function 

of ReLU is represented as, 

 𝑓(𝑥) = {0,   𝑥 ≤ 0𝑥,   𝑥 > 0                    (2) 

 

It is possible to express the activation function of 

the softmax layer as follows in equation (3), 

 𝑓(𝑥𝑗) = 𝑒𝑥𝑗∑ 𝑒𝑥𝑖                     (3) 

 

In equation (3), f(x) denotes the activation 

functions, and x denotes the input to the activation 

functions. 

The VGG-19 network has 19 weight layers, 16 of 

which were convolution layers and three of which are 

forward convolutional layers. All of the convolutional 

layers make use of three-way convolution kernels. To 

imitate a bigger receptive field effect, convolution kernels 

are continually stacked on top of one another to generate a 

convolution sequence every 2 or 4 convolution kernels. 

When the 22pooling window was used in the pooling 

layers, the translation invariance of the model can be 

maintained while also allowing the sizes of the feature 

maps after convolutions to be reduced, which can be 

beneficial. Lastly, the FC layer is combined with three 

continuous FC layers, with the number of channels being 

4096, 4096, and 1000, before being classed and output by 

the Softmax classifier with a total of 1000 labels [19]. 
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Figure-2. Architecture of VGG-16 and VGG-19. 

 

B. MobileNet-v3 

With the integration of hardware-aware network 

architecture search (NAS) and the NetAdapt algorithm, 

MobileNet-v3 is a CNN that was tuned to mobile phone 

CPUs and then later improved through innovative 

architecture advancements. A proposal for MobileNet-v3 

was made by the Google team in the year 2019. NAS-

developed mobile neural architecture search network 

(MnasNet) serves as the foundation for its network design. 

MobileNet-v3 is described as two models: MobileNet-v3-

Large and MobileNet-v3-Small. MobileNet-v3-Large is 

the larger of the two models. These models are intended 

for scenarios with a high demand for resources and cases 

with a low demand for resources. The models are 

constructed by utilizing platform-aware NAS and 

NetAdapt for network search, as well as by incorporating 

network improvements. In this work, the MobileNet-

v3Large model is used. 

 

 
 

Figure-3. Architecture specification of MobileNet-v3-

large [20]. 

 

As mentioned in Figure-3, the presence or 

absence of the Squeeze-and-Excitation in a block is 

indicated by the term SE. The NL represents the 

nonlinearity type that was employed. The terms HS and 

RE stand for h-swish and ReLU, respectively. The 

abbreviation NBN refers to no batch normalization. The 

term s stands for stride. 

The deep separable convolution layer from 

MobileNet-v1 as well as the inverse residual structure with 

a linear bottleneck layer from MobileNet-v2 were added to 

this MobileNet-v3 model. A nonlinearity known as swish 

has been introduced, and when employed as the drop-in 

replacement for ReLU, it has been shown to dramatically 

increase the neural network model’s accuracy. The 

nonlinearity is defined in the following equation (4). 

 𝑠𝑤𝑖𝑠ℎ 𝑥 = 𝑥 ∙ 𝜎(𝑥)                    (4) 

 

However, while this NL enhances accuracy, it 

comes at a non-zero cost in embedded systems because the 

sigmoid function was far more costly to calculate than the 

sigmoid function used in the simulation. Additionally, to 

lower the hardware resource utilization in the embedded 

context, a new activation function h-swish(x) was 

developed to estimate the replacements of the sigmoid, as 

seen in the equation below. 
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ℎ − 𝑠𝑤𝑖𝑠ℎ (𝑥) = 𝑥 𝑅𝑒𝐿𝑈6(𝑥+3)6                    (5) 

 

Prior to the average pooling layers, there was a 

1x1 convolutional layer, which could enhance the 

dimensions of the feature maps and make predictions 

easier, but it further adds to the computing burden by 

increasing the number of convolutional layers. As a result, 

MobileNet-v3 places it behind average pooling in terms of 

performance. First, the average pooling layer was utilized 

for reducing the features map sizes from 7x7 to 1x1, and 

hence to 1x1, and so on, drastically reducing the amount 

of computing required. Convolutions of 3x3 and 1x1 are 

directly extracted from the previous convolution to 

significantly minimize the total computing required to do 

it. There is a significant increase in network operational 

efficiency without a significant decrease in accuracy [20]. 

MobileNet-v3 was partitioned into three sections, 

the first of which comprises one convolutional layer, 

followed by three layers of 3x3 convolutions to extricate 

features. The second part comprises two convolution 

layers, and the third part includes three layers of 3x3 

convolution to extract features. In the following section, 

many bottle-neck convolutional layers are included, which 

are formed of multiple convolutions, deep wise 

convolutions, SE structures, and other elements, and in the 

final section, two 1x1 convolutional layers are used to 

create class output. 

All these proposed models of VGG-16, VGG-19, 

and MobileNet-v3 were trained using different optimizers 

like Adam, AdaMax, SGD, RMSprop, and Ftrl techniques. 

Based on these five optimizers five models were 

developed on VGG-16, VGG-19, and MobileNet-v3. 

 

 Model-01 was modified with Adam optimizer with a 

0.001 learning rate for both VGG-16 and 19 and 

0.00001 learning rate for MobileNet-v3. 

 Model-02 was modified with an SDG optimizer with 

a 0.001 learning rate for both VGG-16 and 19 and a 

0.00001 learning rate for MobileNet-v3. 

 Model-03 was modified with RMSprop optimizer 

with a 0.00001 learning rate for both VGG-16, VGG-

19, and MobileNet-v3. 

 Model-04 was modified with an Ftrl optimizer with a 

0.001 learning rate for both VGG-16 and 19 and a 

0.00001 learning rate for MobileNet-v3. 

 Model-05 was modified with AdaMax optimizer with 

a 0.001 learning rate for both VGG-16 and 19 and a 

0.00001 learning rate for MobileNet-v3. 

4. RESULTS AND DISCUSSIONS 

The proposed model was implemented and tested 

using the PYTHON 3.7.12 programming language tool. 

The experiments are performed on Google Colab Pro. The 

dataset was collected from the TCIA website given by the 

University of California, Los Angeles (UCLA), and used 

in this study for evaluation purposes. 

 

A. Dataset Description 

In this Prostate-MRI-US-Biopsy dataset, US and 

MR images of 1151 individuals as well as 61,119 DICOM 

images, for a total image dataset size of 77.6 GB (GB). 

The mpMRI sequences, such as T2W, DW, and DCE, 

were used to establish MRI targets, which were then rated 

on a Likert-like scale that was closely related to the 

PIRADS version 2 scale. The ROI outlines were traced 

using t2-weighted MRI, which was the only sequence 

included in this data set. The MRI was carried out on a 

Verio, or Skyra and 3 Tesla Trio scanners, depending on 

the manufacturer (Siemens, Erlangen, Germany). All cases 

were treated with a transabdominal phased array, with an 

endorectal coil being employed in a subset of instances. 

3D T2: SPC pulse sequences account for the vast majority 

of pulse sequences, with TR/TE of 2200/203, Matrix/FOV 

of 256 205/14 14 cm, and 1.5mm slice spacing being the 

most common [22]. The dataset can be downloaded from 

this link Prostate MRI and Ultrasound with Pathology and 

Coordinates of Tracked Biopsy (Prostate-MRI-US-

Biopsy). 

 

 
 

Figure-4. Sample images from dataset. 

 

This PCa dataset is made available to the public 

through a data-sharing platform. In order to perform 

Multi-Class Classification, a subset of T2W MR images 

from 845 patient records that had a unique "UCLA" score 

of the ROI was selected from the dataset and used for 

evaluation. The data set was split into two parts: 70 

percent for training and 30 percent for testing, which was 

used for performance analysis. 

The Likert-like score was a visual analog scale on 

which scores of 1-5 signify the chance of cancer in the 

prostate based on the total interpretations of the prostate 

MRI by a radiologist, as opposed to a numerical scale. 

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=68550661#68550661bcab02c187174a288dbcbf95d26179e8
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=68550661#68550661bcab02c187174a288dbcbf95d26179e8
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=68550661#68550661bcab02c187174a288dbcbf95d26179e8
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Scores 1 and 2 indicate a low suspicion of cancer, a score 

of 3 indicates an equivocal suspicion, and a score of 4 or 5 

indicates a high suspicion of cancer. In this case, zero 

indicates the normal/healthy image. 

 

B. Performance Metrics 

For evaluating the performances of the proposed 

models and experimental outcomes, this work included 

performance measures like accuracy, sensitivity, precision, 

specificity, and F1 scores. The terms TP (True Positive) 

and TN (True Negative) indicate the proper identification 

of PCa, while the terms FP (False Positive) and FN (False 

Negative) indicate the incorrect identification of PCa. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁                                  (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃                    (7) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃+𝐹𝑁                    (8) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁+𝐹𝑃                    (9) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙                 (10) 

 

The proposed models of VGG-16, VGG-19, and 

MobileNet-v3 were trained on multiple optimizers with 

different learning rates. The accuracy, precision, 

sensitivity, specificity, and F1-scores were calculated 

based on the evaluation of the models performed on the 

prostate dataset images. 

 

 

Table-1. Performance evaluation of VGG-16 Model-04. 
 

Class Accuracy Precision Sensitivity Specificity F1-Score 

0 0.9331 0.75 1 0.9993 0.8571 

1 0.9331 0.8593 0.9649 0.9944 0.9090 

2 0.9331 0.9444 1 0.9993 0.9714 

3 0.9331 0.9796 0.9150 0.9842 0.9462 

4 0.9331 0.9128 0.9490 0.9601 0.9306 

5 0.9331 0.8888 0.9399 0.9665 0.9137 

 

The performance analysis of classifying the PCa 

using VGG-16 with multiple optimizers was tabulated. By 

using the five different optimizers, five different VGG-16 

models were developed for the classification of PCa. But 

in this paper, out of five, two of the best-performed 

model’s evaluations VGG-16_Model-04 and VGG-

16_Model-05 only presented as shown in Tables 1 and 2. 

Model-04 was modified with Ftrl optimizer with 0.001 

learning rate and Model-05 was modified with AdaMax 

optimizer with 0.001 learning rate. Other models like 

Model-01, 02, and 03 performed below these presented 

models. 

 

 
 

Figure-5. Confusion matrix of VGG-16 Model-04. 

 
 

Figure-6. Performance plot of VGG-16 Model-04. 

 

Comparing models VGG-16_Model-04 and 

VGG-16_Model-05, Model-04 obtained the best 

performance with a constant accuracy of 93.31% in 

classifying PCa from the given dataset images. Figures 5 

and 7 represent the confusion matrix of these VGG-16 

models and the Figures 6 and 8 represent the graphical 

plots of these VGG-16 models based on the performance 

analysis. 
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Table-2. Performance evaluation of VGG-16 Model-05. 
 

Class Accuracy Precision Sensitivity Specificity F1-Score 

0 0.8954 0.75 1 0.9993 0.8571 

1 0.8954 0.7187 0.92 0.9884 0.8070 

2 0.8954 0.8333 1 0.9981 0.9090 

3 0.8954 0.9308 0.9038 0.9467 0.9171 

4 0.8954 0.8983 0.8855 0.9514 0.8918 

5 0.8954 0.8592 0.8854 0.9562 0.8721 

 

 

Figure-7. Confusion matrix of VGG-16 Model-05 

 
 

Figure-8. Performance plot of VGG-16 Model-05. 

 

Table-3. Performance evaluation of VGG-19 Model-04 

Class Accuracy Precision Sensitivity Specificity F1-Score 

0 0.9392 1 1 1 1 

1 0.9392 0.8125 0.9629 0.9926 0.8813 

2 0.9392 0.8888 1 0.9987 0.9411 

3 0.9392 0.9538 0.9474 0.9660 0.9506 

4 0.9392 0.9491 0.9306 0.9761 0.9398 

5 0.9392 0.9209 0.9301 0.9759 0.9255 

 

In Tables 3 and 4, the performance analysis of 

classifying the PCa using VGG-19 with ftrl and AdaMax 

optimizers were tabulated. Out of five models, two of the 

best-performed model’s evaluations VGG-19_Model-04 

modified with Ftrl optimizer with 0.001 learning rate and 

VGG-19_Model-05 modified with AdaMax optimizer 

with 0.001 learning rate only presented. Other models like 

Model-01, 02, and 03 performed below these presented 

models. 

 

 
 

Figure-9. Confusion matrix of VGG-19 Model-04. 

0 0.25 0.5 0.75 1 1.25

Class0

Class1

Class2

Class3

Class4

Class5

Performance 

U
C

LA
 S

co
re

 

F1-Score Specificity Sensitivity Precision Accuracy



                                VOL. 17, NO. 23, DECEMBER 2022                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      2005 

 
 

Figure-10. Performance plot of VGG-19 Model-04. 

 

By comparing the models VGG-16_Model-04 

and VGG-16_Model-05, Model-04 obtained the best 

performance with a constant accuracy of 93.92% in 

classifying PCa from the given dataset images. Figures 9 

and 11 represent the confusion matrix of these VGG-19 

models and figures 10 and 12 represents the graphical 

plots of these VGG-19 models based on the performance 

analysis. Compared to the best-performed VGG-16 model-

04, the VGG-19 model-04 obtained better performance 

and achieved better accuracy. 

 

Table-4. Performance evaluation of VGG-19 Model-05. 
 

Class Accuracy Precision Sensitivity Specificity F1-Score 

0 0.8572 1 0.8 1 0.8888 

1 0.8572 0.7812 0.8333 0.9905 0.8064 

2 0.8572 1 0.9 1 0.9473 

3 0.8572 0.8887 0.8863 0.9138 0.8875 

4 0.8572 0.8294 0.8638 0.9191 0.8462 

5 0.8572 0.8419 0.8004 0.9487 0.8206 

 

 
 

Figure-11. Confusion matrix of VGG-19 Model-05. 

 
 

Figure-12. Performance plot of VGG-19 Model-05. 
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Table-5. Performance evaluation of MobileNet-v3 Model-01. 
 

Class Accuracy Precision Sensitivity Specificity F1-Score 

0 0.9213 1 1 1 1 

1 0.9213 0.7343 1 0.9894 0.8468 

2 0.9213 0.8333 1 0.9981 0.9090 

3 0.9213 0.9131 0.9438 0.9378 0.9282 

4 0.9213 0.9564 0.8667 0.9788 0.9094 

5 0.9213 0.9209 0.9515 0.9753 0.9360 

 

As shown in Tables 5 and 6, the performance 

analysis of classifying the PCa using MobileNet-v3 with 

Adam and Ftrl optimizers was tabulated. Out of five 

models, two of the best-performed model’s evaluations 

MobileNet-v3_Model-01 modified with Adam optimizer 

with 0.00001 learning rate and MobileNet-v3_Model-04 

modified with Ftrl optimizer with 0.00001 learning rate 

only presented. Other models like Model-02, 03, and 05 

performed below these presented models. 

 

 
 

Figure-13. Confusion matrix of MobileNet-v3 Model-01. 

 
 

Figure-14. Performance plot of MobileNet-v3 Model-01. 

 

When comparing the models MobileNet-

v3_Model-01 and MobileNet-v3_Model-04, Model-04 

obtained the best performance with a constant accuracy of 

95.27% in classifying PCa from the given dataset images. 

Figures 13 and 15 represent the confusion matrix of these 

MobileNet-v3 models and figures 14 and 16 represent the 

graphical plots of these MobileNet-v3 models based on the 

performance analysis. Compared to the best-performed 

VGG-16 model-04 and VGG-19 model-04, the proposed 

MobileNet-v3_Model-04 obtained better performance and 

achieved better accuracy. 

 

Table-6. Performance evaluation of MobileNet-v3 Model-04. 
 

Class Accuracy Precision Sensitivity Specificity F1-Score 

0 0.9527 1 1 1 1 

1 0.9527 0.8437 0.9818 0.9939 0.9075 

2 0.9527 0.9444 1 0.9994 0.9714 

3 0.9527 0.9660 0.9582 0.9751 0.9621 

4 0.9527 0.9673 0.9334 0.9847 0.9500 

5 0.9527 0.9259 0.9640 0.9777 0.9445 
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Figure-15. Confusion matrix of MobileNet-v3 Model-04. 

 

 
 

Figure-16. Performance plot of MobileNet-v3 Model-04. 

 

5. CONCLUSIONS 

In this research, DTL models such as VGG-16, 

VGG-19, and MobileNet-v3Large architectures were 

proposed to classify the PCa with the help of T2w MRI 

dataset images. These proposed models were modified 

using different optimizers with different learning rates. 

Optimizers like Adam, AdaMax, SGD, RMSprop, and Ftrl 

are used in this research. These models were fine-tuned by 

most of the top convolution layers and FC layers. The 

Prostate-MRI-US-Biopsy dataset was used for the 

evaluation of the proposed models, which contains both 

US and MR Images of 1151 patients, and 61,119 DICOM 

Images. From the dataset, a subset of T2w MR Images of 

845 patient records with a unique "UCLA" score of the 

ROI was used for Multi-Class Classification. For 

performance analysis, the data set was split into 70% for 

training and 30% for testing. Although a series of different 

optimizers were used to optimize the proposed models 

with different learning rates, the models optimized with 

Ftrl optimizer performed well obtaining the best 

performances compared to the other proposed models. 

According to the obtained performances, the proposed 

models optimized using Ftrl optimizer have obtained 

better performances with 93.31% accuracy, 93.92% 

accuracy, and 95.27% accuracy for VGG-16-Model-04, 

VGG-19-Model-04, and MobileNet-v3 respectively. The 

MobileNet-v3 modified with Ftrl optimizer obtained the 

best performance with higher accuracy than other models. 

The last performance was obtained from the VGG-16. In 

the future, the proposed research can be focused on 

validating the performances of the models with diverse 

datasets and other existing methods. 
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