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ABSTRACT 

In this work, it is proposed how different levels of cryogenic treatment, such as shallow cryogenic treatment 
(SCT), which occurs at -110°C, medium cryogenic treatment (MCT), which occurs at -150°C, and deep cryogenic 
treatment (DCT), which occurs at -175°C, affect the machinability of P20 material. In this paper, an effort is made to 
optimize the process variables in machining P20 steel with cryogenically treated tungsten carbide (WC) cutting tools in the 
CNC milling process using the Response surface methodology (RSM) and Taguchi method. Data for this study is gathered 
using the Box-Behnken design of response surface methodology (RSM). Cutting speed (CS), feed rate (FR), depth of cut 
(DOC), and the lowering temperatures are considered significant process parameters that are functions of performance 
measures. The observations revealed that there is a substantial correlation between performance measures and cryogenic 
treatment, cutting speed, feed, and depth of cut. The purpose of this work is to model the output parameters and optimize 
the process parameters using RSM. 
 
Keywords: cryogenic treatment, tungsten carbide tools, RSM, NSGA-II, SEM analysis. 
 
INTRODUCTION 

Manufacturing sectors have made extensive use 
of CNC milling equipment. Typically, in CNC end milling 
processes, tungsten carbide end milling cutting tools are 
mostly used. The efficiency of the milling operation is 
greatly improved by the cutting tool life. Since every 
machining operation depends on tool life, improving the 
productivity of manufacturing processes is also dependent 
on it. The main variables in the CNC milling process are 
MRR, Tool wear rate (TWR), cutting force, power 
consumption, and surface roughness of the milled work 
material. To provide the ideal machining conditions, it is 
necessary to identify and analyse the changes occurring 
inside the tool materials. Tool life is an important 
economic factor and a major factor in enhancing 
efficiency in CNC milling. Higher TWR slows down 
machining, which increases machining time and reduces 
milling productivity. Higher MRR and low cutting forces, 
TWR, and power consumption are critical for improving 
CNC milling efficiency and reducing surface roughness. 

Cryo-treatment, a supplement to the standard heat 
treatment approach, has been effectively used to reduce 
tool wear with the goal of improving tool life.  The 
material's mechanical properties, such as heat conductivity 
and micro-hardness, are improved by the cryogenic 
treatment, which also refines the grain structure (Jaswin 
and lal, 2010, Gill et al., 2010, Podgornik et al., 2016, 
Yang et al., 2016, Sobotova et al., 2016). Additionally, a 
further advantage of cryogenic treatment is that it 
improves the material's ability to dissipate heat due to 
better thermal conductivity properties (Perez and 
Belzunce, 2014, Xie et al., 2015, Dieringa, 2017) 

Nalbant et al. (2007) investigated the impact of 
cutting tool shape and cutting speed on cutting forces. The 
findings indicated that increasing cutting speed by 20% 
causes the major cutting force to increase by 10.4%. While 
increasing cutting speed by 66.6% causes the major 
cutting force to decrease by 14.6%. Additionally, they 

discovered that an increase in cutter tip radius results in an 
increase in cutting force. Hossein et al. (2007) were able to 
evaluate the causes of feed rate, cutting speed, radial 
depth, and axial depth of cut by simulating first and 
second-order equations of cutting force using the RSM 
approach. Minitab software was utilised to predict the 
outcomes. The range between experimental values and 
projected values is acceptable. By considering the effect 
of process variables including feed rate, cutting speed, and 
depth of cut, Shaik and Srinivas (2017) proposed a multi-
objective evolutionary algorithm (MOEA), or genetic 
algorithm, to reduce the Ra and amplitude of tool vibration 
when milling Al-6061 workpieces using CNC technology. 
According to the investigation, a smaller vibration 
amplitude would probably be sufficient to create the 
conditions for a desirable surface finish. A unique 
integrated evolutionary-based modelling and multi-
objective optimization method for the CNC end milling 
process was proposed by Kondayya and Krishna (2012). 
The experiments are planned using the CCD in RSM, and 
the objective functions are optimised using NSGA-II. For 
process planning, the Pareto optimal solution set is 
produced. Oktem et al. (2005) proposed an effective 
approach for attaining the best machining conditions that 
result in the lowest Ra in CNC milling of mould 
components by coupling RSM with GA. The findings 
show that the experimental values and the anticipated 
values by GA agree very closely. Reddy (2013) proposed 
a method by integrating the Taguchi approach and ANN 
method to maximise the Ra and de-lamination damage 
when using end mills to process GFRP composite 
material. The depth of cut and cutting speed are 
determined to have the greatest effects on the replies based 
on the results of the ANOVA. The projected values and 
experimental values agree very closely. In addition to the 
aforementioned, several studies have been accounted for 
studying the machining execution in CNC turning, EDM, 
Wire-EDM, and ECM processes and have produced 
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successful results. (Chopra and Sargade, 2015, Li et al., 
2013, Li et al., 2016, Ghosh and Rao, 2017) 

Cutting tools are repeatedly subjected to 
cryogenic temperatures (i.e., below 190 °C) as an 
alternative to heat treatment in order to eliminate residual 
stresses and improve steel’s wear resistance. Cryogenic 
treatment results in a significant improvement in hardness 
and toughness. Tool life can be extended by 35 to 50 
percent (Özbek et al., 2015). Cryogenic treatment also 
increases thermal conductivity, which aids in transferring 
heat away from the tool. In addition, cryo-treated materials 
have increased dimensional stability and grain refinement 
(Shaik and Srinivas, 2017, Su and Hou, 2008). 

The process variables involved in cryo-treatment 
include lowering the temperature, soaking period, 
quenching and tempering, heating and cooling rates, and 
more. According to a few studies, lowering 
temperature has a greater impact than the soaking period 
(Kondayya and Krishna, 2012, Li et al., 2015, Arokiadass, 
2015). However, there are very few references in the 
literature that discuss the impact of the cryo-treatment 
soaking period on the milling process performance 
indicators. Few researchers have examined the cryogenic 
cooling impact in machining using liquid nitrogen as a 
coolant over the past ten years (Qu et al., 2016, Zhang et 
al., 2016, Lv et al., 2013, Reddy et al., 2013, Raju et al., 
2011, Yang et al., 2011, Milfelner et al., 2005). However, 
the study found that compared to dry machining, utilising 
liquid nitrogen as a coolant in the machining zone did not 
significantly increase tool life or surface morphology. 
Additionally, whenever the tool's material comes into 
direct touch with liquid nitrogen, it may become brittle 
and develop micro cracks and flank wear at higher 
machining rates. 

DCT has developed as a novel machining method 
in recent years as a means of reducing tool wear in the 
CNC turning process (Özbek et al., 2015, Chetan et al., 
2017). However, there hasn't been a reported much about 
CNC end milling till now. Extensive studies used 
approaches like artificial neural networks (ANN), genetic 
algorithms (GA), fuzzy logic, etc. attempted to determine 
the optimal level of process parameters for the milling 
process (Ozcelik et al., 2005, Yang et al., 2011, Lv et al., 
2013, Zhang et al., 2016). For improved machining 
performance, numerous researchers have optimised 
frequently used machining parameters such as feed rate, 
cutting speed, depth of cut, etc (Tsai et al., 2005, Oktem et 

al., 2005, Kant and Sangwan et al., 2015, Chopra and 
Sargade, 2015, Li et al., 2013, Li et al., 2016, Ghosh and 
Rao, 2017).  

However, little research has been done up to this 
point to determine the ideal level of process parameters by 
using a cryogenic treatment soaking period and a 
lowering temperature. 
 
EXPERIMENTAL WORK 

The Box Behnken design from RSM is used to 
design the experimental runs. To machine, a P20 steel 
workpiece with dimensions of 200x200x12mm, and a 
40mm-long (ISO standard) tungsten carbide end mill 

cutter with four flutes was purchased. P20 steel has the 
following chemical makeup: silicon 0.2-0.8 percent, 
manganese 0.6-1 percent, chromium 1.4-2 percent, 
molybdenum 0.3-0.55 percent, sulfur 0.03 percent 
(maximum), and iron balance. (Vardhan et al., 2018). 

Three tungsten carbide tools were procured and 
they were shallowly cryogenically treated (SCT), 
mediumly cryogenically treated (MCT), and deeply 
cryogenically treated (DCT) tools. Cutting tools undergo 
cryogenic treatment, where they are kept at -110°C, -
150°C, and -175°C for 36 hours while being cooled for 5 
hours and warmed up for 9 hours before being returned to 
room temperature. The cryo treated tools are shown in 
Figure-2. The cryo-system's details are described in the 
section below. 

A cryogenic treatment unit made of stainless steel 
is the main component of the cryogenic treatment system. 
It contains an additional liquid nitrogen delivery system 
that enables it to preserve the soaking duration, cooling 
rate, and warm-up period by delivering a controlled 
volume of pressurized LN2 into the chamber. A solenoid 
valve in the liquid nitrogen delivery chamber is coupled to 
the proportional integral derivative (PID) controller 
shown in Figure-1. 

The solenoid valve, which is managed by a PID 
controller with preset values, controls the flow of liquid 
nitrogen.  Platinum Resistance Temperature Detectors 
(RTD) are used to measure the temperatures of the work 
materials. A data acquisition system continuously stores 
the temperature data of the samples that PID has read 
during the cryogenic treatment cycle. Figure-1 depicts the 
cryo-treatment cycle. A similar type of equipment is used 
elsewhere. (Vardhan et al., 2017). 
 

 
 

Figure-1. Cryogenic treatment setup. 
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Figure-2. Different cryo-treated tools. 
 

The main goal of the experiment is to examine 
how cryogenically treated tungsten carbide cutting tools 
perform during machining. Table-1 displays the process 
parameters that were used. 
 

Table-1. Machining parameters used. 
 

Parameters 
Levels 

L1 L2 L3 

Feed Rate 
(mm/tooth) 

0.1 0.15 0.5 

Cutting Speed 
(m/min) 

75 85 95 

Depth of cut (mm) 0.5 1 1.5 

Lowering 
Temperatures (oC) 

-110 -150 -175 

 
According to the Box Behnken design in RSM 

(Vardhan et al., 2017), 29 tests must be carried out for the 
selected levels, which are listed in Table-2. After ten 
minutes of machining operation, the machining time is 
recorded. The workpiece weight and cutting tool weight 

were determined using electronic weighing equipment. 
The weights of the workpiece & cutting tool are 
recorded before and after machining to analyze MRR & 
TWR. 
 𝑇𝑊𝑅 =  1000 ∗ 𝛥𝑊𝑇/(𝜌 ∗ 𝑇)                   (1) 
 𝑀𝑅𝑅 =  1000 ∗ 𝛥𝑊𝑤/(𝜌 ∗ 𝑇)                   (2) 
 
where ΔWw= change in weight of workpiece (grams), ρ = 
density (kg/m3), T = machining time (mins) 

Some other source has reported on a calculation 
of a similar type (Vardhan et al., 2017, Mohanty et al., 
2014). A Taylor Hobson Surtronic 3+ stylus instrument is 
used to measure the surface roughness (Ra) of the 
machined work material. The workpiece's average Ra 
values are noted, after which the same process is carried 
out four more times, resulting in a tabulated average of the 
four readings of Ra values. 
 
RESULTS AND DISCUSSIONS 

Table-2 displays the experiment's results. The 
relationship between process parameters and performance 
measures was established experimentally, and the most 
influential parameters were discovered using ANOVA at a 
significant threshold of 0.05. 

After the irrelevant parameters were removed, the 
ANOVA for MRR is displayed in Table-3. The most 
significant parameters are determined to be the input 
parameters depth of cut, feed rate, cutting speed, and 
cryogenic lowering temperature, as well as the interaction 
terms feed rate x cryogenic lowering temperature, cutting 
speed x cryogenic lowering temperature, and square terms 
cutting speed x cutting speed (Vardhan et al., 2018). 

For MRR, the adjusted and unadjusted 
coefficients of determination (R2) values are 81.79 and 
88.29 percent, respectively. It is discovered that the lack of 
fit does not effect on any of the output responses. 
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Table-2. Experimental results. 
 

S. No 
A:CS 

(m/min) 

B:FR 

(mm/tooth) 

C:DOC 

(mm) 

D:lowering 

temperature 

(
o
 C) 

MRR 

(mm
3
/min) 

TWR 

(mm
3
/min) 

Ra 

(microns) 

1 75 0.15 1 -1 44325.6 46.7173 1.48 

2 85 0.2 1 -1 55300.4 50.63 1.5 

3 85 0.15 1.5 -1 64503.5 58.0591 1.78 

4 85 0.15 0.5 -1 54023.3 53.2911 1.3 

5 85 0.1 1 -1 47963.1 55.4008 1.2 

6 95 0.15 1 -1 60884.1 56.1814 1.15 

7 75 0.15 1 1 58843.8 26.097 0.68 

8 85 0.15 1.5 1 80326.2 40.0844 0.44 

9 85 0.1 1 1 63929.2 35.865 0.69 

10 85 0.2 1 1 80003.9 42.1941 0.58 

11 85 0.15 0.5 1 65460.1 29.5359 0.48 

12 95 0.15 1 1 78562.2 48.5232 0.36 

13 75 0.1 1 0 48131.3 44.3038 1.48 

14 75 0.15 0.5 0 50403.4 45.9198 1.35 

15 75 0.2 1 0 55124.5 51.4135 1.54 

16 75 0.15 1.5 0 49612 48.5232 1.6 

17 85 0.15 1 0 63605.1 50.5232 1.38 

18 85 0.15 1 0 63605.1 50.5232 1.38 

19 85 0.15 1 0 68605.1 50.5232 1.38 

20 85 0.1 0.5 0 52403.4 36.0844 0.72 

21 85 0.15 1 0 63605.1 50.5232 1.38 

22 85 0.2 1.5 0 84806.9 62.0717 1.45 

23 85 0.2 0.5 0 68219.7 58.7426 1.05 

24 85 0.15 1 0 63605.1 55.5232 1.58 

25 85 0.1 1.5 0 72085.8 68.2911 1.22 

26 95 0.2 1 0 72085.8 64.1814 1.25 

27 95 0.1 1 0 62757.1 58.962 0.85 

28 95 0.15 1.5 0 72583.3 72.346 1.15 

29 95 0.15 0.5 0 60884.1 52.3038 0.9 

 
After deleting unnecessary parameters, the 

analysis of variance tables for MRR and TWR is provided 
in Table-3 and Table-4. The most significant variables 
influencing the responses are those with p-values lower 
than 0.05. Cutting speed, DOC, feed rate, and cryogenic 
lowering temperature have more influence on all of the 
responses. 

For TWR, the results for the coefficient of 
determination (R2) and the corrected R2 are 97.55 percent 
and 95.72 percent, respectively. It is discovered that all of 
the output responses are unaffected by the lack of fit. 

Table-5 displays the ANOVA for Surface 
roughness after removing unnecessary factors. The most 
significant factors influencing the responses are those with 
p-values lower than 0.05. Cutting speed, depth of cut, feed 
rate, and cryogenic lowering temperature is shown to be 
the process variables that have the most influence on all of 
the responses. For Surface Roughness, the coefficient of 
determination (R2) and adjusted R2 values are 97.19 and 
95.62 percent, respectively. The lack of fit is found to have 
no effect on any of the output responses. 
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Table-3. Analysis of variance for MRR. 
 

Source 
Sum of 

Squares 
dof 

Mean 

Square 

F 

Value 

p-value 

Prob> F  

Model 8.291E+009 11 9.431E+008 13.57 < 0.0001 Significant 

A-CS 3.244E+009 1 2.224E+009 31.12 < 0.0001 
 

B-FR 7.698E+008 1 6.788E+008 9.63 0.0060 
 

C-DOC 1.602E+009 1 1.712E+009 24.34 0.0001 
 

D-Lowering Temp 4.102E+009 1 3.112E+009 44.57 < 0.0001 
 

AC 2.784E+008 1 1.794E+008 2.46 0.1266 
 

AD 9.614E+008 1 9.734E+008 13.89 0.0025 
 

BD 3.105E+008 1 2.815E+008 4.21 0.0603 
 

CD 8.311E+007 1 8.321E+007 1.21 0.2889 
 

A2 5.116E+007 1 5.136E+007 0.64 0.4046 
 

C2 2.235E+008 1 2.245E+008 3.11 0.0905 
 

Residual 1.258E+009 18 6.981E+007 
   

Lack of Fit 1.178E+009 14 8.427E+007 4.22 0.0866 not significant 

 
Table-4. Analysis of variance for TWR. 

 

Source 
Sum of 

Squares 
dof 

Mean 

Square 

F 

Value 

p-value 

Prob> F  

Model 4315.08 11 366.26 52.13 < 0.0001 significant 

A-CS 618.36 1 628.36 90.13 < 0.0001 
 

B-FR 61.24 1 61.24 8.79 0.0091 
 

C-DOC 613.49 1 613.49 88.04 < 0.0001 
 

D-Lowering Temp 2974.80 1 2934.80 415.80 < 0.0001 
 

AC 18.10 1 16.80 2.51 0.1324 
 

AD 81.16 1 81.66 11.49 0.0039 
 

BC 70.21 1 72.21 10.06 0.0059 
 

B2 51.29 1 51.29 7.10 0.0170 
 

C2 8.83 1 8.83 1.36 0.2781 
 

D2 14.11 1 13.81 1.96 0.1802 
 

Residual 112.32 16 7.18 
   

Lack of Fit 100.52 12 8.29 2.62 0.1827 not significant 

Pure Error 12.80 4 3.20 
   

 
 
 
 
 
 
 
 
 
 
 
 



                                VOL. 17, NO. 24, DECEMBER 2022                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      2044 

Table-5. Analysis of variance for surface roughness. 
 

Source 
Sum of 

Squares 
dof 

Mean 

Square 

F 

Value 

p-value 

Prob> F  

Model 4.21 11 0.43 62.19 < 0.0001 significant 

A-CS 0.65 1 0.56 78.75 < 0.0001 
 

B-FR 0.12 1 0.12 15.88 0.00085 
 

C-DOC 0.13 1 0.13 20.61 0.00035 
 

D-Lowering Temp 3.26 1 3.28 470.74 < 0.0001 
 

BD 0.077 1 0.088 12.56 0.0013 
 

CD 0.14 1 0.14 18.16 0.0004 
 

A2 0.021 1 0.012 1.61 0.2233 
 

B2 4.026E-003 1 4.028E-003 0.59 0.4569 
 

C2 0.020 1 0.011 1.51 0.2351 
 

D2 9.772E-003 1 9.783E-003 1.42 0.2514 
 

Residual 0.13 17 6.937E-003 
   

Lack of Fit 0.12 15 7.953E-003 2.34 0.2129 
not 

significant 

Pure Error 0.024 3 3.371E-003 
   

Cor Total 4.42 27 
    

 
Figure-3 displays a surface variation plot for the 

MRR between feed and cutting speed. MRR tends to rise 
along with rising feed rate and cutting speed. This is 
because more heat is generated in the cutting zone as the 
cutting speed rises. As a result of this high heat, the metal 
softens, and the MRR increases (Mohanty et al., 2014), 
Vardhan et al., 2018). 
 

 
 

Figure-3. Surface plot for variation MRR with CS vs FR. 
 

 
 

Figure-4. Surface plot for variation MRR with lowering 
temperature vs. feed. 
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Figure-5. Surface plot for variation MRR with depth of 
cut and feed. 

 

 
 

Figure-6. Normal plot of residual for MRR. 
 

 
 

Figure-7. Contour plot for MRR. 
 
 
 

The following equations (3) to (5) express the 
results of regression analysis in terms of actual 
components 𝐌𝐑𝐑 = +64465.14 + 8443.00 x A + 5689.27 x B +6043.64 x C + 8343.78 x D + 3122.65 x A x C +2184.35 x B x D − 5621.36 x A2 + 2017.96 x C^2    (3) 
 𝐓𝐖𝐑 = +52.13 + 7.46 x A + 2.53 x B + 6.12 x C −8.17 x D + 4.36 x A x C + 3.24 x A x D − 7.22 x B x C +2.77 x B x D + 2.34 x B2 + 1.98 x C2 − 8.35x D^2    (4) 
 𝐒𝐮𝐫𝐟𝐚𝐜𝐞 𝐫𝐨𝐮𝐠𝐡𝐧𝐞𝐬𝐬 =  +1.42 − 0.21 x A + 0.10 x B +0.15 x C − 0.43 x D + 0.085 x A xB − 0.10 x B x B −0.13 x C x D − 0.078 x A2 −  0.11x B2 − 0.12 x C2 − 0.35 x D^2              (5) 
 
MICRO-STRUCTURAL ANALYSIS 

The metallographic microstructure of ASM Metal 
Handbook (Sanathanam et al., 2004) has the following 
phases. (a) WC is represented by the α-phase, and (b) 
cobalt binder is represented by the β-phase. (c)  γ-phase 
represents numerous carbides of tungsten and at least one 
metal binder. (d) η-phase represents carbides of the cubic 
lattice (TaC, TiC, etc.). The η-phase is not significant in 
the current work because the chosen grade contains just a 
few additional carbides. The obtained microstructure 
reveals that only α, β & η phases have been seen, but lack 
of TiC and TaC prevents the formation of the gamma 
phase. The rigid Alpha grains' shape, is incompletely 
produced as a result of the deposition of several grains. 
The usual size of the α-phase grains in the microstructure 
of DCT tungsten carbide tools is larger than that of the 
SCT tools, as seen in Figure-8 and Figure-9. The hard α-
phase grains reach their most stable state during the cryo-
treatment process. It makes the hard α-phase grain 
structure rigid and stress-free, which reduces stress-
induced fractures and increases the life of the cutting tool 
(Vardhan et al., 2018). Figure-10 shows the EDS report on 
spot 1. 
 

 
 

Figure-8. Microstructure of tungsten carbide tools. 



                                VOL. 17, NO. 24, DECEMBER 2022                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      2046 

 
 

Figure-9. Microstructure of DCT tungsten carbide tools. 

 
 

Figure-10. EDS report on spot 1. 

 

 
 

Figure-11. Solution with the desirability. 
Table-6. Optimized values of process parameters. 

 

S. No 
Cutting 

Speed 

Feed 

Rate 

Depth of 

cut 

Lowering 

Temp. 
MRR TWR 

Surface 

roughness 
Desirability 

1 83.655 0.175 0.500 1.000 70663.075 35.996 0.500 0.849 

 
OPTIMIZATION USING RSM METHODOLOGY 

The goal of this study is to maximise MRR and 
reduce TWR, Ra, cutting forces, and power consumption 
by applying RSM methodology to optimise the machining 
parameters. The optimum parameter values derived via 
RSM are shown in Table-6. The best combination of the 
machining parameters that affect performance 
measurements should be selected from the primary 
desirability plots to increase the productivity of the CNC 
end milling operation. The optimised process parameter 
for improving the end milling process performance 
measures is shown in Table-6. The ideal mixing of the 
resultant machining parameters is found to be within the 
proposed mathematical model and process parameter 
ranges. Figure-11 shows the solution's desirability graph. 

 
CONCLUSIONS 

This study and investigation examine the impact 
of input parameters on the CNC milling performance 
measures for the machinability of high-strength materials. 
The analysis leads to the following conclusions: 
 
a) The end mill carbide cutting tools' life was greatly 

increased by the cryogenic treatment. When compared 

to other treatments like SCT and MCT, deep 

cryogenic treatment has the greatest impact on tool 

wear. 
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b) When using a DCT-treated tool at -175 ° c 

temperature, it was found that MRR increased by 

24.53 percent, TWR, Ra, cutting force, and power 

consumption decreased by 31.03 percent, 75.28 

percent, 29.62 percent, and 13.37 percent, 

respectively, compared to a tool that had undergone 

SCT treatment. 

c) According to SEM analysis, surface quality on the 

machined surface with the DCT tool has increased 

when compared to other treated tools. 

d) Cutting speed, depth of cut, and cryogenic lowering 

temperature, feed rate was determined to be the 

important factors for all the responses. 

e) From the analysis, it is observed that the DCT cutting 

tool is preferable to MCT and SCT-treated cutting 

tools while machining P20 steel to achieve higher 

MRR, lower TWR, and Ra. 

f) To optimize the process for various materials, it is 

necessary to analyze factors such as different coatings 

on cutting tool materials, wet and dry machining, 

cooling temperature, and tempering cycle. 
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