
 VOL. 18, NO. 3, FEBRUARY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 251

OBSTACLE DETECTION AND AVOIDANCE SYSTEM PERFORMED

WITH DRONE USING ROS AND PYTHON

Karen Cerón, David Reina and Faiber Robayo Betancourt

Departamento de Ingeniería Electrónica, Facultad de Ingeniería, Universidad Surcolombiana, Neiva, Huila, Colombia

E-Mail: faiber.robayo@usco.edu.co

ABSTRACT

The AR Drone 2.0 obstacle detection and avoidance system using ROS (Robot Operating System) as a

development environment, OpenCV as a library for image processing, and Python as a programming language are

presented. The algorithm is based on the object's color feature to determine whether it is an obstacle to allowing

autonomous flights to the drone if the drone's battery charge level and its distance from the ground station are considered.

The obstacle detection scenario is simulated using ROS-Gazebo, and then the algorithm is tested in a real controlled

environment. It shows the proper functioning of the system, that is, it manages to detect a red object correctly and avoid it

by the control actions implemented in the algorithm.

Keywords: algorithm, ROS, Hue Saturation Value, controlled environment, drone.

1. INTRODUCTION

The UAV (Unmanned Aerial Vehicle) was

developed some time ago. However, nowadays, its use has

increased exponentially due to its easy access. Drones are

the most popular ones as they are tools that can carry out

multiple applications that simplify human work. For

example, they can use them in journalism to capture

different perspectives (Gynnild and Uskali, 2018), in crop

spraying (Pharne et al., 2018), for goods transport and

shipment (Jones, 2017), in search and rescue, in

agriculture, among others. Drones are characterized by

several motors (4, 6, or 8) with direct drive on their

respective blades. Independent control of each rotor's

rotation speed allows the vehicle to advance, change

direction, or remain floating in a fixed position (Barreiro

and Valero, 2015).

These UAVs have a communication system

(usually radio control and/or WiFi) for an operator to

control such an aerial robot. Regardless of the task being

performed; the operator is located in a strategic location,

where he makes eye contact with the drone while

performing proper maneuvers to avoid accidents. Operator

distraction or low visibility can lead to drone crashes

against objects. The robot operator can make mistakes

when performing an activity with the drone, either out of

fatigue, in a hurry, by the person's reaction time, or by any

other factor involving human failures.

Drones can be controlled using alternative tools

such as development environments, image processing, and

neural networks, among others. Works such as the

Polytechnic University of Cartagena propose the visual

control of the AR quadrotor Drone using OpenCV, ROS,

and C++, but in a simulated way using the Gazebo

environment containing the graphical representation of the

model of the drone in question. The results obtained were

good except for a small problem with the HSV (Hue

Saturation Value) transformation and in the adjustment of

the color of the object, because even human skin is

detected so the person moving the object must as far as

possible be covered with garments (Banach, 2016).

A height control system of the AR quadrotor

Drone 2.0 applying fuzzy logic in a controlled

environment is proposed (Robayo, 2019). Three

controllers are developed using fuzzy logic whose

parameters are obtained from the sensors in such a way

that it allows control of the height and orientation angles

such as Pitch, Roll, and Yaw. Also, they design and

implement an interface in MatLab that provides

communication between the user and all system functions.

The implemented interface allows the choice of the

execution mode, follows the reference parameters

autonomously, and stores data for further analysis.

ROS is a collection of frameworks for robot

software development. ROS was initially developed in

2007 under the name of a switchyard by Stanford's

Artificial Intelligence Laboratory to support the Robot

with Artificial Intelligence project (ROS, 2018). Since

2008, the development has continued mainly at Willow

Garage, a robotic research institute with more than twenty

institutions collaborating on a federated development

model (Ortega, 2017).

OpenCV is a free machine vision library

developed by Intel, which since 1999 has been used in all

kinds of applications that require incorporating object

recognition (Cheblender, 2018). In recent years, the wide

use of ROS and OpenCV has constituted them as essential

and fundamental tools for robotic applications where it is

necessary to work with image processing. So far, various

techniques such as PTAM, and Dense Depth Mapping,

among others, have been used to avoid obstacles.

 Work proposes to design and implement an

obstacle detection and avoidance algorithm based on the

object color characteristic. The algorithm is tested in a

controlled environment using the AR Drone 2.0 quadrotor

with programming in OpenCV, ROS, and Python.

Instrumentation is essential when executing the control, so

sensors such as the camera and height sensor are used. The

use of the ROS development environment makes it

possible to adjust both linear and angular drone speeds.

The OpenCV library's operation allows the processing of

the image obtained in real-time thanks to the cv bridge

mailto:faiber.robayo@usco.edu.co

 VOL. 18, NO. 3, FEBRUARY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 252

package, which allows converting the image obtained

from ROS for further processing.

2. MATERIALS AND METHODS

Figure-1 represents the block diagram of the

proposed system. At first, the ground station is connected

to the drone via WiFi, the algorithm is initialized, and the

drone camera data is obtained. Image processing is then

performed to perform obstacle detection and take the

necessary avoidance control actions.

Figure-1. Diagram of the implemented system block.

2.1 OpenCV and cv_bridge

To convert ROS format images to an image type

that can be manipulated in OpenCV, the cv_bridge

package (Navarro and Angulo, 2015) is used. This

package contains CvBridge, a ROS library that provides

an interface between ROS and OpenCV. The use of this

tool enables the acquisition of data from the robot camera

in real time. It is necessary to import the image obtained

from the drone, subsequently subscribe to the "topic" of

the drone camera, and carry out the format conversion of

the image for this case from ROS to BGR. Figure-2 shows

the process for converting image format using CvBridge.

Figure-2. Image conversion process using CvBridge.

2.2 Color Obstacle Detection

For the obstacle detection stage, it is necessary to

set the range covered by the color to be detected using the

HSV format. The NumPy library is used to create

arrangements with the minimum and maximum values of

that range. Red detection is performed for this work,

considering that the red color appears in two different

HSV format spaces. Figure-3 shows the values for HSV

format components (Solano, 2019).

For the detection of an object, a mask must be

created that gathers the colors covered by the set ranges,

and an image format change (BGR to HSV) is appropriate.

The Range() function of the OpenCV, which the library

receives as parameters for the image on which it is

possible to perform color detection, the lower bound of

that color, and the upper bound are used as parameters.

The image that returns this function is of binary type,

where the appearance of white color represents the

detection of the color specified in the ranges set above. In

this particular case, it is necessary to have the OpenCV

libraries add () function to put together the two masks

created in one.

Figure-3. View of HSV components.

To display the detected color outline, use the find

Contours () function of the OpenCV library. The center of

the largest outline detected in the image is located and

enclosed in the smallest possible circle encompassing the

entire detected object. It is possible also to find the "x"

coordinate and the "y" coordinate using the OpenCV

moments () function and print them on the screen using

the rospy loginfo () function.

Concerning the creation of the circle enclosing

the detected object, the size of the radius obtained by the

min Enclosing Circle() function is taken into account; if

that size exceeds 10 pixels, then the enclosed object is

displayed in the circle created with the help of the circle()

function of the OpenCV library.

When detecting an obstacle, the coordinates

found are always positive, so it is optional to create

variables that contain negative values (-1 and -2) as a

mechanism to perform control actions in case no obstacle

is detected. Following this, the final image is displayed

with the help of the OpenCV imshow () function. The

BGR format image is converted to ROS format and

published using the ROS publish () function. It is also

defined as the main () function of the algorithm in which

the image_converter class object is created. The node is

executed until it is interrupted by the keyboard. Finally,

the node is created, and a value is defined that specifies

the message rate or cup using the Rate () function and

executes the main ().

 VOL. 18, NO. 3, FEBRUARY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 253

2.3 Avoidance of Obstacles

For obstacle avoidance, a class called Detector ()

is created. Its due constructor is defined, and two variables

with a value of None are set, which are intended to store

the coordinate values published by the object detection

algorithm. After that, the function responsible for

performing control actions is implemented depending on

whether the object detection algorithm's coordinates are

positive or negative. Two publishers are created regarding

the topics /cmd_vel and ardrone/land because they allow

manipulating the drone's speeds and landing by sending

messages and data, respectively. This function receives a

parameter known as data, the "x" coordinate published by

the obstacle detection algorithm, to assign it to one of the

two variables set at the start of the avoidance algorithm. It

is decided to work with one of the two coordinates

because either represents the detection of an obstacle.

Once the "x" coordinate, published by the

obstacle detection algorithm, is obtained, an if/else cycle is

implemented that is responsible for printing the presenting

situation (presence or not of an obstacle) and taking the

appropriate control actions. If the "x" coordinate is

negative, adjust the angular velocity relative to the z-axis

to a value of zero, and the linear velocity relative to the x-

axis is changed to a value of 0.1 meters/second. A variable

is also created that automatically counters to set a flight

limit value and land later (forward timer). Otherwise,

when the "x" coordinate is positive, the linear velocity

relative to the x-axis is set to a value of zero, and the

angular velocity relative to the z-axis is set to a value of

0.3 radians/second. Similarly, a variable is set that serves

as a timer for drone landing (turn timer). Figure-4 shows

the drone's axes with their respective directions (Maravall

et al., 2017).

Figure-4. AR. Drone 2.0 with their respective axes.

The proposed algorithm allows the drone to

detect and avoid red obstacles, always turning in a positive

direction to the z-axis (anti-clockwise direction). Figure-5

illustrates the direction of rotation to the z-axis.

Figure-5. The direction of rotation of the drone relative

to the z-axis (Yaw).

Linear and angular speeds are then published

depending on the situation the drone is witnessing, and the

display of both turn and forward timers and two control

cycles are set for these timers. The robot is then allowed to

land after a set time by publishing the topic /ardrone/land.

Finally, the node is created for this algorithm, the

creation of the class object, the setting of timer variables

as global, and their respective initialization to zero, as well

as the creation of subscribers, to receive the data published

by the object detection algorithm.

3. RESULTS AND DISCUSSIONS

3.1 Simulation of the Detection Scenario

Figure-6 shows the simulation of the obstacle

detection scenario with AR Drone 2.0 using ROS-Gazebo.

The Gazebo is a tool that allows simulating environments

in three dimensions to estimate a robot's behavior (drone)

in a virtual environment. The left side of the figure, it can

see the drone and the obstacle in front of it. On the right

side of the figure is evidenced by the detection of the

obstacle. At the bottom, the coordinates "x", "y" of its

center.

Figure-6. Simulation of obstacle detection with AR.

Drone 2.0 using Gazebo.

 VOL. 18, NO. 3, FEBRUARY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 254

3.2 Detection and Avoidance in a Real Controlled

 Environment

Figure-7 shows real-time obstacle detection using

AR Drone 2.0. This figure shows two scenarios, the first

of which is the drone with the obstacle located in front of

it, and the second is the ground station obtaining the image

of the drone's front camera with its respective detection.

Figure-7. Obstacle detection with AR. Drone 2.0 in

real-time.

The algorithm is tested, and the proper

functioning of the system is evident. That is, it manages to

detect a red object correctly. According to tests performed

with the largest obstacle, it can recognize it up to an

average distance of 2.5 meters. It then avoids the obstacle

using the control actions implemented in the algorithm. It

is possible by changing the angular velocity until the

obstacle is outside the drone's visual range to modify the

linear velocity and follow a straight path until it detects

another red obstacle in its path. As a safety measure

implemented for the system, limit times are set, which

makes it possible for a safe landing of the drone to be

generated when exceeded. By turning the drone

continuously for 17.5 seconds, it lands satisfactorily,

according to the tests performed. Also, by continuing in a

straight line during this period, the drone performs its

landing correctly. Figure-8 shows the trajectory made by

the drone during testing in the controlled environment.

Figure-8. Trajectory made by the drone.

3.3 Record of Heights in Tests Carried Out

The algorithm's effectiveness can be affected by

the state of the drone, as due to the wear of its

components, it can cause there to be variations in its

performance and obtain unwanted results. The results

obtained for height vs. time in two of the tests performed

are presented below.

Figure-9 shows the curve representing the height

data relative to the time for the first chosen test. The

analysis that is performed covers the time range for which

the height is different from zero so the average height for

this test is 710.22 mm. The initial percentage of the battery

charge for this test is 64%, and the final percentage is

41%.

Figure-9. Height vs. time plot for the first test.

Figure-10 shows the curve that represents the

height versus time data for the second chosen test. This

test's initial drone battery charge is 49%, and the final

charge is 11%.

 VOL. 18, NO. 3, FEBRUARY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 255

The time interval to be analyzed is from the

second 11.78 to the second 107.78. During this period, the

algorithm presented is executed, and the average height for

this test is 635.60 mm. According to Figure-10, the

average height for this test is very low due to the battery

reduction charge percentage of the drone during the test.

Figure-10. Height vs. time plot for the second test.

Figure-11 shows the orientation data on the Z-

axis (yaw) for the time for the first chosen test. This figure

shows that the drone has an initial orientation of

approximately -145 degrees (regardless of the first nine

seconds time interval approximately when the drone is at

rest). This initial orientation is the drone's value in degrees

relative to the z-axis when executing the takeoff

command. In the designed system, the drone performs

counter clockwise avoidance, i.e., when detecting an

obstacle, it executes the positive turn of the z-axis (yaw).

It is concluded that the upward sections represent the

rotation of the drone, looking at the curve obtained in

Figure-11 because its orientation relative to the z-axis is

changing. However, the first two sections are related to the

avoidance of the first obstacle, and the third upward

section corresponds to the avoidance of the second

obstacle. Finally, the drone is landed manually because it

is impossible to wait 17.5 seconds as a safety measure for

landing due to lack of space in the enclosure.

Figure-11. Z-axis orientation plot vs. time for the

first test.

3.4 Comments on the Results
This work's contribution is academic in type

because technologies that are also interesting are used and

that in our region have been little explored.

ROS is composed; its architecture provides

utilities such as obtaining data (images and sensory) for

further processing and modifying variable values (engine

speeds) to perform desired control actions. The results

obtained when using this development environment were

as expected.

It highlights the cv_bridge of the package to

obtain images in real-time on other tools such as the

FFmpeg software and the OpenCV Video Capture

function. During the entire process of constructing the

algorithm, these three tools were tested, finding that

obtaining the images using FFmpeg and Video Capture

had a significant delay (approximately 15 seconds). This

delay affects the entire system control mechanism making

it inefficient, while when using the cv_bridge, the robot

image is obtained immediately.

OpenCV software for image processing provides

many facilities that make this a complete library, ideal for

the various cases where image processing is required.

However, the effectiveness of obstacle detection in the

algorithm presented depends on the correct establishment

of the color ranges to be detected. Adjusting an extensive

range results in the detection of unwanted colors and, on

the contrary, adjusting a minimal range is equivalent to not

detecting all possible ranges of the chosen color.

The distance between the drone and the ground

station is important for proper operation and, therefore, for

the system's performance. Getting too far away from the

drone means that the image obtained from it to the ground

base freezes. Consequently, it is impossible to process the

image in real-time; then, obstacle detection is not

achieved, and control actions are taken to perform correct

avoidance.

Finally, through the tests carried out in a

controlled environment, it is possible to appreciate the

system's correct functioning. It manages to perceive a red

 VOL. 18, NO. 3, FEBRUARY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 256

object, and can recognize it as an obstacle, then avoid it

through the control actions implemented in the algorithm.

That is possible by the variation of the angular velocity

until the obstacle is outside the drone's drone's visual

range to modify the linear speed and follow a straight

trajectory until it detects another obstacle in its path.

4. CONCLUSIONS

A red obstacle detection and avoidance algorithm

was developed using the Python programming language,

the ROS development environment, and the OpenCV

image processing library. The project is affordable to

anyone, as the tools mentioned above are open-source. On

the other hand, some factors negatively influence the

algorithm's performance, such as the state of the drone

(blades, motors, and batteries) which makes it difficult to

see the expected performance of the algorithm performed.

It is important to consider the WiFi network's

coverage (scope) created by the drone when energized

since exceeding this distance loses communication

between the drone and the ground station (computer). This

situation results in the loss of video transmission packets,

and therefore no control actions are performed for the

drone.

The ROS structure offers a lot of advantages

among which it is worth highlighting the real-time data

acquisition of the robot under study, such as obtaining

camera images, and sensor data, as well as its large

existing community that provides useful information on

the web.

Highlights include real-time imaging

performance by subscription to the drone camera topic

versus using the Video Capture () function. This feature

provides images with considerable delay time while

delivered images are obtained for ROS in real-time.

However, for obstacle detection and avoidance to be

performed correctly, it is necessary to define the color

ranges to be detected, and to do this factors such as the

luminosity of the environment can turn the color of the

object to a different one must be taken into account.

This work provides important foundations on a

very little-known topic in the region, which is very useful,

as is ROS's use for the implementation of algorithms in

robots. The algorithm presented provides valuable

information and functions as a guide for future projects or

research, and the logic of the algorithm works with

significant similarity in other robots, not only aerial but

also terrestrial and aquatic.

REFERENCES

Banach A. 2016. Visual control of the Parrot drone with

OpenCV, Ros and Gazebo Simulator. Repositorio Digital

Universidad Politécnica de Cartagena. [On-Line].

Available in:

https://repositorio.upct.es/handle/10317/5442.

Barreiro P. and Valero C. 2015. Drones en la agricultura.

Feria del Sector Agropecuario. Universidad Politécnica de

Madrid, España.

Cheblender. 2018. Qué es OpenCV. [Online]. Available

in: https://www.cheblender.org/que-es-opencv/.

Gynnild A. and Uskali T. 2018. Responsible Drone

Journalism. London, Taylor & Francis Group.

Jones T. 2017. International Commercial Drone

Regulation and Drone Delivery Services. RAND

Corporation. [On-Line]. Available in:

https://doi.org/10.7249/rr1718.3.

Maravall D., de Lope J., Fuentes J. 2017. Navigation and

Self-Semantic Location of Drones in Indoor Environments

by Combining the Visual Bug Algorithm and Entropy-

Based Vision. Universidad Politécnica de Madrid, España.

https://doi.org/10.3389/fnbot.2017.00046.

Navarro J. and Angulo C. 2015. People exact-tracking

using a Parrot AR. Drone 2.0. Universidad Politécnica de

Cataluña, Barcelona, España.

Ortega D. 2017. Qué es ROS (Robot Operating System).

[On-Line]. Available in:

https://openwebinars.net/blog/que-es-ros/.

Pharne Mr. I. D., Kanase S., Patwegar S., Patil P., Pore

A., Kadam Y. 2018. Agriculture Drone Sprayer.

International Journal of Recent Trends in Engineering &

Research (IJRTER). pp. 181-185.

Robayo F. 2019. Control of UAV based on fuzzy logic in

a controlled environment. ARPN Journal of Engineering

and Applied Sciences. 14(24): 4221-4227.

ROS. 2018. Robotic Operating System. [On-Line].

Available in: https://www.ros.org.

Solano G. 2019. Detección de colores en OpenCV [en 4

Pasos] - Parte1 [Archivo de video]. [Online]. Available in:

https://www.youtube.com/watch?v=giwtDYcIXKA.

