
                                  VOL. 18, NO. 7, APRIL 2023                                                                                                                 ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                        805 

A COMPARISON STUDY BETWEEN THE OPTIMAL DFIG FLUX AND 

SPEED CONTROL IN THE PRESENCE OF MAGNETIC HYSTERESIS AND 

CLASSICAL CONTROL STRATEGIES FOR WIND SYSTEMS 

 
A. Barra

1
, A. Moutabir

1
, H. Ouadi

2
 and B. Bensassi

1
 

1GEITIIL Lab, University Hassan II, Faculty of Science, Casablanca, Morocco 
2ERERA Lab, ENSAM, Mohammed V University, Rabat, Morocco 

E-Mail: barra.adil@Gmail.com  

 
ABSTRACT 

In the wind energy systems field, the most common control objective treated by authors is the speed and flux 

control of the doubly fed induction generator (DFIG). For computing complexity matter, the generator mathematical 

representation is generally modelled assuming a linear magnetic characteristic. Based on this assumption, the rotor flux 

control will aim to track a fixed flux reference, mostly its nominal value. The inconvenience with this strategy is that 

practically, neglecting the nonlinearity of the generator’s magnetic characteristic, optimal performance control cannot be 

performed. In this study, considering the magnetic flux hysteresis and saturation characteristic, new modelling of the DFIG 

is presented. Furthermore, a new speed and optimal flux Backstepping controller is designed based on the Lyapunov 

theory. To prove its performance, a comparison study with different control strategies will be conducted. Simulations 

considering a wide range of wind speed variations are illustrated in the Matlab/Simulink environment. 
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1. INTRODUCTION 
In the few last decades, renewable energies 

including wind turbines got major attention worldwide. 

Regardless there epic performances, wind turbines based 

on DFIG are complex, and their control law design is 

difficult [7] since the considered model is multivariable 

and highly nonlinear. 

The control of the DFIG using linear or nonlinear 

controllers has been the subject of several earlier studies 

[6-10]. The speed tracking objective and flux regulation 

for MPPT is the most treated subject present in the 

literature. However, the proposed controllers function as 

intended when a linear magnetic characteristic is assumed. 

Practically, this assumption is not realistic [3, 4, 5], as the 

DFIG magnetic characteristic is non-linear and manifests 

unfavourable errors and oscillations [15] due to the 

hysteresis and saturation phenomenon produced by the 

magnetic material. However, if the rotor flux regulation is 

done in the vicinity of a constant nominal value, standard 

models (ignoring the magnetic non-linearity) can still be 

employed in speed control design. Only when the 

aerodynamic torque is near the nominal DFIG 

electromagnetic torque value, it’s exclusively in this 

scenario that the DFIG efficiency reaches its maximum. 

However, the aerodynamic torque is typically not a priori 

fixed and may be subject to large range variation in real 

applications, due to the considerable variance in wind 

speed. 

To address the aforementioned issues, a new 

speed control system, using online rotor flux reference 

adjustment to track the optimal speed reference in the 

presence of significant wind speed variation must be 

developed. The optimal flux reference will also experience 

considerable range variations under these circumstances, 

signifying considerable excursions of the operating point 

on the magnetic characteristic. Therefore, the controller 

design should be based on a model that takes into 

consideration the nonlinearity of the machine’s magnetic 

circuit to provide high control performances regardless of 

the DFIG operation mode. Hysteresis and saturation both 

characterize this nonlinearity 

To our knowledge, no paper has dealt yet with the 

MPPT control of the DFIG under saturation/hysteresis 

phenomena. In [12]-[13], nonlinear controllers were 

developed for a wind system by taking only into account 

the magnetic saturation (neglecting the hysteresis effect).  

This assumption facilitates relatively the development of 

the DFIG model and the MPPT regulator synthesis. 

However, in practice, the hysteresis phenomena degrade 

the expected wind system performances (problems of 

precision and oscillations). 

Many hysteresis mathematical models were 

developed to describe the hysteresis phenomena. They can 

be classified as follows:  

a) Operator-based hysteresis models such as the 

Preisach model and Prandtl-Ishlinskii model, where an 

infinite number of hysteretic operators are involved in 

their integral model which implies high computation 

complexities [3].  

b) Differential equation-based hysteresis models 

such as the Backlash-like model, Bouc-Wen model, or 

Duhem model, where the finite number of hysteretic 
operators can be easily extended to continuous inputs by 

using approximation and a limiting process, avoiding the 

computation complexity [3].  

In the present work, a special case of the Duhem 

model, the Coleman-hudgdon model [2] is considered to 

describe the magnetic nonlinear characteristic. This model 
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proved to be quite convenient for hysteresis modelling in 

ferromagnetic materials [2, 14]. 

The nonlinearity of the magnetic characteristic 

will be taken into account when a revised model for the 

DFIG is built in this paper. Furthermore, a new controller 

for the considered wind system is developed based on this 

new model. The two control objectives are as follows: i) 

tracking the optimal reference of the DFIG’s rotor speed 

(for an MPPT purpose); ii) tracking the optimal reference 

of the DFIG’s rotor flux. The optimization of the rotor flux 

implies the minimization of the stator current, which will 

reduce the stator's joule losses. The DFIG speed/flux 

controller created using the backstepping technique turns 

out to be very different from the conventional DFIG 

control strategies that consider a constant flux references 

and assume a linear magnetic characteristics. Despite 

variations in wind speed, the newly developed controller is 

formally demonstrated to be globally asymptotically stable 

and enforces the speed and flux to exactly trace their 

fluctuating reference trajectory. 

To highlight the interest in taking account of the 

saturation/hysteresis phenomena in the control design, the 

performances of a classical regulator (neglecting the 

saturation/hysteresis) will be evaluated by simulation, 

concerning those of the new proposed controller. On the 

other hand, for checking the robustness of the proposed 

wind turbine system, the controller performances will be 

inspected in the presence of different electrical grid faults 

(Voltages dips, frequency deviation, and load variation) 

This paper is organized as follows: Section 2 

describes the characterisation of magnetic hysteresis in 

induction machines. Section 3 describes the induction 

machine model; the machine speed/flux controller is 

designed and analyzed in Section 4; the controller 

performances are illustrated by simulations in Section 5. 

 

 
 

Figure-1. General schema of the considered wind system. 

 

Table-1. Notations and symbols. 
 

 Poles pairs 𝜴 DFIG rotor speed 𝑽𝒔𝜶, 𝑽𝒔𝜷 Stator voltage (𝛼-𝛽) components 𝑽𝒓𝜶, 𝑽𝒓𝜷 Rotor voltage (𝛼-𝛽)components 𝑽𝒔𝒅, 𝑽𝒔𝒒 Stator voltage in (d-q) rotating frame 𝑱, 𝒇 Total inertia constant, Friction ratio 𝑳𝒔,𝑳𝒓 Stator, Rotor cyclic induction 𝑴𝒔𝒓 Mutual cyclic induction 𝑹𝒔,𝑹𝒓 Stator, Rotor resistance(per phase) 𝝎𝒔, 𝝎 Stator, Rotor pulsation 𝒊𝒓𝜶 ,𝒊𝒓𝜷  Rotor current (𝛼-𝛽) components 𝒊𝒔𝜶  ,𝒊𝒔𝜷  Stator current (𝛼-𝛽) components 𝒊𝝁𝜶  ,𝒊𝝁𝜷  The magnetizing current (𝛼-𝛽) components 

𝝋𝒓𝜶 ,𝝋𝒓𝜷  Rotor flux (𝛼-𝛽) components 𝝋𝒔𝜶 ,𝝋𝒔𝜷  Stator flux (𝛼-𝛽) components 𝝋𝝁𝜶 ,𝝋𝝁𝜷  The magnetizing flux (𝛼-𝛽) components 𝑻𝒎 Electromagnetic Torque 𝑻𝑳 Load Torque 𝑹 Radius of the turbine 𝝆 Air density 

 Dispersion ratio 𝜴𝒓𝒆𝒇 Rotor speed reference 𝝋𝒓𝒆𝒇 Rotor flux reference 𝑷𝒂 Aerodynamic power 𝑪𝑷(𝝀) Power coefficient 𝒗𝒘 Wind speed 𝑽𝒔𝒎𝒂𝒙 The norm of the stator voltage 
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2. CHARACTERISATION OF MAGNETIC  

    HYSTERESIS-SATURATION IN AC 

    MACHINES  

The Coleman-Hodgdon model comes from the 

duhem model, which was proposed for active hysteresis in 

1897 [2]. Using a phenomenological approach, this 

differential equation-based hysteresis model focuses on 

the fact that the output can only change its character when 

the input changes direction. In this section, the Coleman-

Hodgdon model and its properties are introduced briefly 

[1]. 

A differential model for hysteresis can be 

represented by the duhem hysteresis model. Duhem's 

magnetic hysteresis model has been thoroughly studied by 

Coleman and Hodgdon. For ease of use, this type of 

duhem model will be referred to as the CH model 

throughout this study [1]. It can be represented in terms of 

the CH model as: 

 𝑑𝜑𝜇𝑑𝑡 = 12 (𝑔1(𝑖𝜇 , 𝜑𝜇) − 𝑔2(𝑖𝜇 , 𝜑𝜇)) |𝑑𝑖𝜇𝑑𝑡 | + 12 (𝑔1(𝑖𝜇 , 𝜑𝜇) −           𝑔2(𝑖𝜇 , 𝜑𝜇)) 𝑑𝑖𝜇𝑑𝑡 , ∀𝑡 ∈ (0, 𝑇)                    (1) 

 𝜑𝜇(0) = 𝜑𝜇0                                                              (2) 

 

Where 

 𝑔1 = 𝑔(𝑖𝜇) + 𝛼(𝑓(𝑖𝜇) − 𝜑𝜇)                                 (3) 

 𝑔2 = 𝑔(𝑖𝜇) − 𝛼(𝑓(𝑖𝜇) − 𝜑𝜇)                                 (4) 

 

Introducing (3), (4) into (1), one has: 

 𝑑𝜑𝜇𝑑𝑡 = 𝛼 |𝑑𝑖𝜇𝑑𝑡 | [𝑓(𝑖𝜇) − 𝜑𝜇] + 𝑑𝑖𝜇𝑑𝑡 𝑔(𝑖𝜇)                  (5) 

 

with α a positive constant, and the three following 
conditions are to be satisfied. 

Condition 1: f(.) is piecewise smooth, monotone 

increasing, with  lim𝑖𝜇→∞ 𝑓′(𝑖𝜇)  finite;  

Condition 2: g(.) is piecewise continuous, even, 

with  lim𝑖𝜇→∞ 𝑔(𝑖𝜇) = lim𝑖𝜇→∞ 𝑓′(𝑖𝜇) 

Condition 3: For all   𝑖𝜇 > 0, 𝑓′(𝑖𝜇) > 𝑔(𝑖𝜇) >𝛼𝑒𝛼𝑖𝜇 ∫ |𝑓′(𝜁) − 𝑔(𝜁)|𝑒−𝛼𝜁∞𝑖𝜇 𝑑𝜁 

To illustrate the previously studied case for the 

generator considered in this paper, the corresponding 

functions 𝑓(. ), 𝑔(. ) of the C-H model is chosen as: 

 𝑓(𝑖𝜇) = 𝑐 tanh(𝑖𝜇) + 𝑎𝑖𝜇                                               (6) 

 𝑔(𝑖𝜇) = 𝑓′(𝑖𝜇)(1 − 𝑏𝑒−|𝑖𝜇|)                                 (7) 

 

Note that the f(.) and g(.) functions respect the 

three conditions previously presented. Experimental 

measurements of the magnetic characteristic can be used 

to calculate the c and α parameters. The chosen values for 
the studied machine instance are. The adopted values for 

the case of the machine study are 001.0a , 2.1c , 

6.0b  and 3 (see [1]). The shape of the obtained 

hysteresis cycle is presented in Figure-2. 

 

 
 

Figure-2. Hysteresis curve is given by the C-H model for 

the first phase. 

 

3. DOUBLY FED INDUCTION GENERATOR  

    MODEL 

 

A. Electrical and Flux Equations for the AC Machines 

The Doubly fed induction generator can be 

modelled by its electrical and mechanical equations. A 

stationary reference mark (α, β) will be used to elaborate 
the control model given in this study. The equations for 

the AC electrical machine are provided by:    

Stator electrical equations [9] 

 𝑉𝑠𝛼 = 𝑅𝑠𝑖𝑠𝛼 + 𝑑𝜑𝑠𝛼𝑑𝑡                                                (8) 

 𝑉𝑠𝛽 = 𝑅𝑠𝑖𝑠𝛽 + 𝑑𝜑𝑠𝛽𝑑𝑡                                                (9) 

 

Rotor electrical equations [9] 

 𝑉𝑟𝛼 = 𝑅𝑟𝑖𝑟𝛼 + 𝑑𝜑𝑟𝛼𝑑𝑡 + 𝜔𝜑𝑟𝛽                               (10) 

 𝑉𝑟𝛽 = 𝑅𝑟𝑖𝑟𝛽 + 𝑑𝜑𝑟𝛽𝑑𝑡 − 𝜔𝜑𝑟𝛼                               (11) 

 

Likewise, the (𝛼, 𝛽) components of the stator and 

rotor flux verify [9]: 

 𝜑𝑠𝛼 = 𝐿𝑠𝑖𝑠𝛼 + 𝜑𝜇𝛼                                             (12) 

 𝜑𝑠𝛽 = 𝐿𝑠𝑖𝑠𝛽 + 𝜑𝜇𝛽                                             (13) 

 𝜑𝑟𝛼 = 𝜑𝜇𝛼                                                            (14) 

 𝜑𝑟𝛽 = 𝜑𝜇𝛽                                                            (15) 

 

the (α, β) components of the magnetizing currents verify: 

 𝑖𝑟𝛼 = 𝑖𝜇𝛼 − 𝑖𝑠𝛼                                                             (16) 

 𝑖𝑟𝛽 = 𝑖𝜇𝛽 − 𝑖𝑠𝛽                                                            (17) 

 

The classical state-space model of the DFIG is 

generally presented with this vector 
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𝑋 = [𝑖𝑠𝛼 , 𝑖𝑠𝛽 , 𝜑𝑟𝛼 , 𝜑𝑟𝛽 , 𝛺]𝑇 [11], but to introduce the 

hysteresis character in the state space model, the vector X 

will be increased by the (α, β) components of the 
magnetizing current 𝑖𝜇. The new state vector considered is 

given by:  

 𝑋 = [𝑖𝑠𝛼 , 𝑖𝑠𝛽 , 𝜑𝑟𝛼 , 𝜑𝑟𝛽 , 𝛺, 𝑖𝜇𝛼 , 𝑖𝜇𝛽]𝑇                               (18) 

 

B. Rotor Flux State Equations 

The dynamics of the fluxes in the rotor are given 

by the equations (10) - (11). However, they involve the 

components (α, β) of the rotor current. These latter are not 
considered state variables (see 18). We will try to express 

them according to the components of the vector X.  

Indeed, by substituting (16)-(17) in (10)-(11), one 

obtains the state equations of the rotor fluxes. 

 𝑑𝜑𝑟𝛼𝑑𝑡 = 𝑉𝑟𝛼 − 𝑅𝑟𝑖𝜇𝛼 + 𝑅𝑟𝑖𝑠𝛼 − 𝜔𝜑𝑟𝛽                (19) 

 𝑑𝜑𝑟𝛽𝑑𝑡 = 𝑉𝑟𝛽 − 𝑅𝑟𝑖𝜇𝛽 + 𝑅𝑟𝑖𝑠𝛽 + 𝜔𝜑𝑟𝛼                (20) 

 

C. Stator Current State Equations 
By introducing (12) - (13) in (8) - (9), we deduce 

the dynamics of the currents in the stator: 

 𝑑𝑖𝑠𝛼𝑑𝑡 = − 𝑅𝑠𝐿𝑠 𝑖𝑠𝛼 + 1𝐿𝑠 𝑉𝑠𝛼 − 1𝐿𝑠 𝑑𝜑𝜇𝛼𝑑𝑡                                (21) 

 𝑑𝑖𝑠𝛽𝑑𝑡 = − 𝑅𝑠𝐿𝑠 𝑖𝑠𝛽 + 1𝐿𝑠 𝑉𝑠𝛽 − 1𝐿𝑠 𝑑𝜑𝜇𝛽𝑑𝑡                                (22) 

 

Since the components (α, β) of the magnetic flux 
are not considered as state variables, then, by introducing 

(14) - (15), (16) - (17) in (19) - (20), one obtains: 

 𝑑𝑖𝑠𝛼𝑑𝑡 = − 𝑅𝑠𝐿𝑠 𝑖𝑠𝛼 + 1𝐿𝑠 𝑉𝑠𝛼 − 1𝐿𝑠 [𝑉𝑟𝛼 − 𝑅𝑟𝑖𝜇𝛼 + 𝑅𝑟𝑖𝑠𝛼 −            𝜔𝜑𝑟𝛽]                                                           (23) 

 𝑑𝑖𝑠𝛽𝑑𝑡 = − 𝑅𝑠𝐿𝑠 𝑖𝑠𝛽 + 1𝐿𝑠 𝑉𝑠𝛽 − 1𝐿𝑠 [𝑉𝑟𝛽 − 𝑅𝑟𝑖𝜇𝛽 + 𝑅𝑟𝑖𝑠𝛽 +            𝜔𝜑𝑟𝛼]                                                           (24) 

 

D. State Equations of the Rotor Speed 

The electromagnetic torque Tm delivered by the 

generator is given by [9]: 

 𝑇𝑚 = 𝑝(𝜑𝑠𝛼𝑖𝑠𝛽 − 𝜑𝑠𝛽𝑖𝑠𝛼)                                             (25) 

  

By using the flux equations (12) - (13), the 

electromagnetic torque can be expressed in function of the 

(α, β) components of the rotor flux (considered as state 
variables), namely: 

 𝑇𝑚 = 𝑝(𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼)                                             (26) 

 

While applying the rotation dynamics principle, 

one deducts the rotor speed state equation  

 𝑑𝛺𝑑𝑡 = 𝑝𝐽 (𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼) − 𝑇𝐿𝐽 − 𝑓𝐽 𝛺                           (27) 

 

E. Magnetizing Current State Equations 

Recall that taking into account the hysteresis is 

carried out by the C-H model defined in (5). This latter 

expressed the dynamic of the magnetizing flux. By 

convenience, this model is taken again in this paragraph 

 𝑑𝜑𝜇𝑘𝑑𝑡 = 𝑑𝑖𝜇𝑘𝑑𝑡 (𝛼𝑠𝑖𝑔𝑛(𝑖̇𝜇̇𝑘)[𝑓(𝑖𝜇𝑘) − 𝜑𝜇𝑘] + 𝑔(𝑖𝜇𝑘))  (28) 

 

where k=1,2,3 represents the different phases. Otherwise, 

it is easily checked (by referring to the hysteresis cycle 

Figure-2), that the variation sense of the current 𝑖𝜇𝑘 is 

identical to the variation sense of the flux 𝜑𝜇𝑘. 

Accordingly, one has 

 𝑠𝑖𝑔𝑛(𝑖̇𝜇̇𝑘) = 𝑠𝑖𝑔𝑛(𝜑̇𝜇𝑘)                                             (29) 

   

Let’s define h as the quantity 

 ℎ(𝑖𝜇𝑘 , 𝜑𝜇𝑘, 𝑖𝜇̇𝑘) = 1(𝛼𝑠𝑖𝑔𝑛(𝑖̇̇𝜇𝑘)[𝑓(𝑖𝜇𝑘)−𝜑𝜇𝑘]+𝑔(𝑖𝜇𝑘))  (30) 

 

where 

 𝑑𝑖𝜇𝑘𝑑𝑡 = ℎ(𝑖𝜇𝑘 , 𝜑𝜇𝑘, 𝑖𝜇̇𝑘) 𝑑𝜑𝜇𝑘𝑑𝑡                                (31) 

 

Applying the direct and inverse Concordia 

transformation to the triphase system defined by (31) 

implies: 

 𝑑𝑑𝑡 [𝑖𝜇𝛼𝑖𝜇𝛽] = 𝐶23 [ℎ1 0 00 ℎ2 00 0 ℎ3] ∗ 𝐶32 𝑑𝑑𝑡 [𝜑𝜇𝛼𝜑𝜇𝛽]                (32) 

 

Where ℎ𝑘 can be defined  

 ℎ𝑘 = ℎ(𝑖𝜇𝑘 , 𝜑𝜇𝑘, 𝑖𝜇̇𝑘)                                             (33) 

 

By substituting (14), (15), (19), and (20) in the 

vector equation (32), one constructs the two following 

sixth and seventh state space equations of the AC 

machine:  

 𝑑𝑖𝜇𝛼𝑑𝑡 = 16 (4ℎ1 + ℎ2 + ℎ3)(𝑉𝑟𝛼 − 𝑅𝑟𝑖𝜇𝛼 + 𝑅𝑟𝑖𝑠𝛼 − 𝜔𝜑𝑟𝛽) − √36 (ℎ2 − ℎ3)(𝑉𝑟𝛽 − 𝑅𝑟𝑖𝜇𝛽 + 𝑅𝑟𝑖𝑠𝛽 − 𝜔𝜑𝑟𝛼)                   (34) 

 𝑑𝑖𝜇𝛽𝑑𝑡 = − √36 (ℎ2 − ℎ3)(𝑉𝑟𝛼 − 𝑅𝑟𝑖𝜇𝛼 + 𝑅𝑟𝑖𝑠𝛼 − 𝜔𝜑𝑟𝛽) + 12 (ℎ2 + ℎ3)(𝑉𝑟𝛽 − 𝑅𝑟𝑖𝜇𝛽 + 𝑅𝑟𝑖𝑠𝛽 − 𝜔𝜑𝑟𝛼)                   (35) 
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Equations (19), (20), (23), (24), (27), (34), and 

(35) represent the established DFIG state space model. For 

a more compact form, let’s consider the following state 

space model: 

 𝑋̇ = 𝐹(𝑋) + 𝐺 𝑢                                                            (36) 

 𝑦 = 𝜆(𝑋) = [ 𝛺𝜑𝑟𝛼2 + 𝜑𝑟𝛽2 ]                                             (37) 

 

with 

 𝑋 = [𝑖𝑠𝛼 , 𝑖𝑠𝛽 , 𝜑𝑟𝛼 , 𝜑𝑟𝛽 , 𝛺, 𝑖𝜇𝛼 , 𝑖𝜇𝛽]𝑇                               (38) 

 𝑢 = [𝑉𝑟𝛼 , 𝑉𝑟𝛽]𝑇                                                            (39) 

 𝐺 = [− 1𝐿𝑠 0 1 0 0 0 00 − 1𝐿𝑠 0 1 0 0 0]𝑇
                (40) 

 

F(X) =
[  
   
   
 − RsLs isα + 1Ls Vsα − 1Ls [−Rriμα + Rrisα − ωφrβ]− RsLs isβ + 1Ls Vsβ − 1Ls [−Rriμβ + Rrisβ + ωφrα]−Rriμα + Rrisα − ωφrβ−Rriμβ + Rrisβ + ωφrαPJ (φrαisβ − φrβisα) − TLJf6(X)f7(X) ]  

   
   
 
    (41) 

with 𝑓6(𝑋) = 16 (4ℎ1 + ℎ2 + ℎ3)(𝑉𝑟𝛼 − 𝑅𝑟𝑖𝜇𝛼 + 𝑅𝑟𝑖𝑠𝛼 −𝜔𝜑𝑟𝛽) − √36 (ℎ2 − ℎ3)(𝑉𝑟𝛽 − 𝑅𝑟𝑖𝜇𝛽 + 𝑅𝑟𝑖𝑠𝛽 − 𝜔𝜑𝑟𝛼)(42) 

 𝑓7(𝑋) = − √36 (ℎ2 − ℎ3)(𝑉𝑟𝛼 − 𝑅𝑟𝑖𝜇𝛼 + 𝑅𝑟𝑖𝑠𝛼 − 𝜔𝜑𝑟𝛽) +12 (ℎ2 + ℎ3)(𝑉𝑟𝛽 − 𝑅𝑟𝑖𝜇𝛽 + 𝑅𝑟𝑖𝑠𝛽 − 𝜔𝜑𝑟𝛼)                (43) 

 

4. SPEED AND FLUX CONTROLLER DESIGN  

    AND ANALYSIS 

Any control strategy for DFIG is characterized by 

two main components: 

 

a) The rotor flux reference generator used 

b) The DFIG model was considered during the design of 

the regulator.  

 

In this context, Depending on the way these 

components are designed four control strategies are 

considered (see Table-2). 

 

Table-2. Different speed control strategies. 
 

 
Reference Flux generator 

Nominal Flux Optimal Flux 

Magnetic 

Characteristic model 

Linear LMC-NF LMC-OF 

Hysteretic HMC-NF HMC-OF 

In the existing literature, the most popular DFIG 

control strategy is the LMC-NF which is characterized by 

a non-optimal constant flux reference and an MPPT 

controller designed from the linear magnetic model. There, 

the constant flux reference should normally be given the 

machine flux nominal value. The resulting control 

performances are not satisfactory from an energetic 

viewpoint, especially in the presence of small wind 

speeds. 

The LMC-OF control strategy is characterized by 

a variable flux reference, this latter is computed 

considering for each torque value the minimal stator 

current, the main interest of this configuration is to 

minimize the joule losses in the stator, and this will allow 

the extraction of more power from the generator. The 

speed regulator is designed considering a linear hysteretic 

magnetic characteristic. 

The HMC-NF control strategy (see Table-2) is 

characterized by a constant flux set point. The speed 

regulator is designed taking into account the hysteretic 

magnetic characteristic. Such a strategy is practically 

useless as no benefit is gained from model complexity if 

the flux reference is kept constant. 

The present paper focuses on the new control 

strategy (HMC-OF) that consists in designing an optimal 

flux reference generator and an MPPT controller (Figure-

5). The latter is designed based on the non linear model 

(36)–(43) that takes into account the hysteretic feature of 

the DFIG magnetic characteristic. The flux reference 

optimality is expected to guarantee the minimization of the 

stator current required to produce the maximum 

electromagnetic torque corresponding to a given wind 

speed. The proposed control strategy is presented in detail 

in Subsections 4.1 and 4.2. 

 

4.1 Optimal Speed Reference and Flux Reference  

      Generator 

 

4.1.1 Optimal flux reference computing  
 The conception of the optimal flux 

reference algorithm consists in presenting the optimal 

stator current in the function of the rotor flux for each 
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value of the mechanical torque. To this end, representing 

the mechanical torque in a d-q reference frame seems to be 

more interesting from a computing point of view.  

If we orient the d component of the reference 

frame following the rotor flux, the flux q-component is 

null and all state variables are constant in steady-state. 

Since 𝜑𝑟𝑞 = 0 the torque equation becomes  

 𝑇𝑚 = 𝑝𝜑𝑟𝑖𝑠𝑞                                              (44) 

 

From (23)-(24), the d-q components of the stator 

voltages in a steady state are given by 

 𝑉𝑠𝑑 = 𝑅𝑠𝑖𝑠𝑑 − 𝜔𝑠𝜑𝑠𝑞                                             (45) 

  𝑉𝑠𝑞 = 𝑅𝑠𝑖𝑠𝑞 + 𝜔𝑠𝜑𝑠𝑑                                             (46) 

 

Substituting (12)-(13) in (45)-(46), one has 

 𝑉𝑠𝑑 = 𝑅𝑠𝑖𝑠𝑑 − 𝑙𝑠𝜔𝑠𝑖𝑠𝑞                                              (47) 

 𝑉𝑠𝑞 = 𝑅𝑠𝑖𝑠𝑞 + 𝜔𝑠(𝑙𝑠𝑖𝑠𝑑 + 𝜑𝑟)                               (48) 

 

The stator's direct connection to the grid leads 

one to the following equality: 

 𝑉𝑠𝑚𝑎𝑥2 = 𝑉𝑠𝑑2 + 𝑉𝑠𝑞2                                              (49) 

 

By substituting (47) and (48) in (49) one has: 

 𝑉𝑠𝑚𝑎𝑥2 = [𝑅𝑠2 + 𝑙𝑠2𝜔𝑠2]𝑖𝑠𝑑2 + 2𝜔𝑠𝑙𝑠𝜑𝑟𝑖𝑠𝑑 + [𝑙𝑠2𝜔𝑠2 +               𝑅𝑠2]𝑖𝑠𝑞2 + 2𝑅𝑠𝜔𝑠𝜑𝑟𝑖𝑠𝑞 + 𝜔𝑠2𝜑𝑟2                (50) 

 

By introducing (44) in (50) the d component of 

the stator current verify 

 𝑖𝑠𝑑 = − 𝜔𝑠𝑙𝑠𝜑𝑟[𝑅𝑠2+𝑙𝑠2𝜔𝑠2] + √[ 𝜔𝑠𝑙𝑠𝜑𝑟[𝑅𝑠2+𝑙𝑠2𝜔𝑠2]]2 + 𝑉𝑠𝑚𝑎𝑥2[𝑅𝑠2+𝑙𝑠2𝜔𝑠2] − ( 𝑇𝑚𝑝𝜑𝑟)2 − 2𝑅𝑠𝜔𝑠𝜑𝑟[𝑅𝑠2+𝑙𝑠2𝜔𝑠2] 𝑇𝑚𝑝𝜑𝑟 − 𝜔𝑠2[𝑅𝑠2+𝑙𝑠2𝜔𝑠2] 𝜑𝑟2                                  (51) 

 

let’s consider Is the norm of the stator current, then using (50) and (58), the resulting norm of the stator current could be 

given by 𝐼𝑠 = √𝑖𝑠𝑑2 + 𝑖𝑠𝑞2   (52) 

𝐼𝑠 = √[− 𝜔𝑠𝑙𝑠𝜑𝑟[𝑅𝑠2+𝑙𝑠2𝜔𝑠2] + √[ 𝜔𝑠𝑙𝑠𝜑𝑟[𝑅𝑠2+𝑙𝑠2𝜔𝑠2]]2 + 𝑉𝑠𝑚𝑎𝑥2[𝑅𝑠2+𝑙𝑠2𝜔𝑠2] − ( 𝑇𝑚𝑝𝜑𝑟)2 − 2𝑅𝑠𝜔𝑠𝜑𝑟[𝑅𝑠2+𝑙𝑠2𝜔𝑠2] 𝑇𝑚𝑝𝜑𝑟 − 𝜔𝑠2[𝑅𝑠2+𝑙𝑠2𝜔𝑠2] 𝜑𝑟2]2  +  √[ 𝑇𝑚𝑝𝜑𝑟]2  (53) 

 

Equation (53) expresses 𝐼𝑠 as a function of 𝑇𝑚 and 𝜑𝑟. 

 

 

 
 

Figure-3. Curves of torque (19108, 15000, 10000, 5000, 

and 1000Nm) each curve design a current minimum 

corresponding to the optimal flux. 

 

 
 

Figure-4. Optimal current–flux (OCF) characteristic. 

 

 

A sample of 9 relevant torque values 𝑇𝑚𝑗  

(j=1,…,9) has been a priori selected and the corresponding 
global minima (𝜑𝑇𝑚𝑗∗ , 𝐼𝑇𝑚𝑗∗ ) can be graphically determined 

as illustrated by Figure-4 where all the curves correspond 

to the induction machine characterized by the numerical 

parameters of Table-3. Doing so, a set of 9 global minima (𝜑𝑇𝑚𝑗∗ , 𝐼𝑇𝑚𝑗∗ )  (j=1,…,9) has been obtained. The set of 
minima points have been fitted in the least squares sense 

by a polynomial function of n
th

-order, denoted F(.). The 

degree n=5 proved to be suitable for the data under 

consideration. The polynomial created in this manner is 

denoted by: 
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𝐹(𝐼𝑠) = 𝜃𝑛𝐼𝑠𝑛 + 𝜃𝑛−1𝐼𝑠𝑛−1 + ⋯+ 𝜃1𝐼𝑠 + 𝜃0                (54) 

Table-3. Coefficients of the polynomial F(.). 
 

Inde

x 

Valu

e 

Inde

x 

Value Inde

x 

Value 𝜃0 0.85 𝜃1 −0.0612 𝜃2 0.4986 𝜃3 −1.719 𝜃4 3.1370 𝜃5 −2.8389
 

4.1.2 Optimal speed reference 

The main interest of working under a variable 

speed reference is that the choice of this reference can be 

made optimal to extract the maximum available power. 

Furthermore, the achievement of this latter guarantees 

optimal aerodynamic efficiency. 

 
 

Figure-5. The shape of the aerodynamic power according 

to the rotor speed for various values of wind speed.  

Highlighting MPP. 

 

For a given wind speed, there exists a unique 

optimal rotor speed reference for extracting the maximum 

mechanical power (see Fig.5). For this, a sample of 20 

relevant wind speed values 𝑣𝑗  (𝑗 = 1,… ,20) has been a 

priori selected and the corresponding global maxima (𝛺𝑗∗, 𝑃𝑎𝑗∗ ) can be graphically determined [11]. By doing so, 

a set of 20 points (𝛺𝑟𝑗∗ , 𝑃𝑎𝑗∗ ) (𝑗 = 1,… ,20) has been 

constructed. Then, a n
th

-order polynomial function R(.), 

fitting in the least squares sense the set of (𝛺𝑟𝑗∗ , 𝑃𝑎𝑗∗ ) 

points, has been built. For the considered wind turbine, 

characterized by the numerical parameters of Table-2 and 

the shape of 𝐶𝑃(𝜆) presented in [11], the degree 𝑛 = 4 

turned out to be convenient for the considered data. The 

polynomial thus constructed is denoted: 

 𝑅(𝑣) = 𝑤4𝑣4 + 𝑤3𝑣3 + 𝑤2𝑣2 + 𝑤1𝑣 + 𝑤0  (55) 

 

where the coefficients 𝑤𝑗  have the numerical values of 

Table-4. For the considered wind system, the shape of 𝑅(𝑣) is plotted in Figure-6 which will be referred to as an 

optimal wind speed power (OWRS) characteristic.  

 

Table-4. Numerical values of coefficients in the 

polynomial R(v). 
 

Index Value Index Value Index Value 𝑤0 45 𝑤2 9.996 𝑤4 −0.002 𝑤1 −0.04247 𝑤3 0.064   

 

 
 

Figure-6. Optimal wind-rotor speed (OWRS) 

characteristic. 

 

4.2 Rotor Speed and Rotor Flux Controller Design  

      Analysis 

We are interested in the problem of controlling 

the rotor speed and flux norm for the doubly fed induction 

generator described by the model (36-43) that takes into 

account, the saturation and hysteresis of the magnetic 

characteristic. The speed and flux references (𝛺𝑟𝑒𝑓 ,𝜑𝑟𝑒𝑓) 

are any bounded and derivable functions of time and their 

two first derivatives are available and bounded. These 

conditions can always comply with filtering the reference 

through second-order linear filters.  

The controller design will now be performed in 

two steps using the backstepping technique. First, let’s 

introduce the tracking errors: 

 𝑒1 = 𝛺𝑟𝑒𝑓 − 𝛺                                                            (56) 

 𝑧1 = 𝜑𝑟𝑒𝑓2 − (𝜑𝑟𝛼2 + 𝜑𝑟𝛽2 )                                             (57) 

 

Step 1: It follows from (36)-(43) that the errors 𝑒1 and 𝑧1 undergo the following differential equations: 

 𝑒̇1 = 𝛺̇𝑟𝑒𝑓 − 𝑃𝐽 (𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼) + 𝑇𝐿𝐽                 (58) 

 𝑧̇1 = 2𝜑𝑟𝑒𝑓𝜑̇𝑟𝑒𝑓 − 2𝜑𝑟𝛼𝜑̇𝑟𝛼 − 2𝜑𝑟𝛽𝜑̇𝑟𝛽                (59) 

 

  By substituting (19)-(20) in (59) one has:  

 𝑧̇1 = 2𝜑𝑟𝑒𝑓𝜑̇𝑟𝑒𝑓 − 2𝜑𝑟𝛼𝑉𝑟𝛼 − 2𝜑𝑟𝛽𝑉𝑟𝛽 + 2𝑅𝑟(𝜑𝑟𝛼𝑖𝜇𝛼 +          𝜑𝑟𝛽𝑖𝜇𝛽) − 2𝑅𝑟(𝜑𝑟𝛼𝑖𝑠𝛼 + 𝜑𝑟𝛽𝑖𝑠𝛽)                (60) 

 

In equations (58) the quantities 𝜇1 =𝑃𝐽 (𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼) stand up as virtual control signal. So 

that, for the tracking error 𝑒1 vanishes asymptotically, let 

us consider the following virtual control: 

 𝜇1 = 𝑐1𝑒1 + 𝛺̇𝑟𝑒𝑓 + 𝑇𝐿𝐽                                              (61) 

 

Similarly, to control the tracking error 𝑧1, 

equation (60) suggests choosing the quantity 2𝜑𝑟𝛼𝑉𝑟𝛼 +2𝜑𝑟𝛽𝑉𝑟𝛽 (considered as a virtual control) such that: 

 2𝜑𝑟𝛼𝑉𝑟𝛼 + 2𝜑𝑟𝛽𝑉𝑟𝛽 =𝑑1𝑧1 + 2𝜑𝑟𝑒𝑓𝜑̇𝑟𝑒𝑓 + 2𝑅𝑟(𝜑𝑟𝛼𝑖𝜇𝛼 + 𝜑𝑟𝛽𝑖𝜇𝛽) −2𝑅𝑟(𝜑𝑟𝛼𝑖𝑠𝛼 + 𝜑𝑟𝛽𝑖𝑠𝛽)  (62) 
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 where 𝑐1 and 𝑑1 are any positive real design parameters. 

Indeed, let’s consider the Lyapunov’s candidate function 

defined by:

 

 
 

Figure-7. Control loops of the whole studied system. 

 𝑉1 = 12 (𝑒12 + 𝑧12)                                                            (63) 

 

Its time derivative is given by (using (61)-(62)) 

 𝑉̇1 = −𝑐1𝑒12 − 𝑑1𝑧12                                             (64) 

 

In this step, 𝜇1 is retained as a first stabilization 

function, and the new tracking errors denoted 𝑒2is defined: 𝑒2 = 𝜇1 − 𝑃𝐽 (𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼)                               (65) 

 

By substituting (61) in (65), the tracking error 𝑒1dynamic is given by 

 𝑒̇1 = −𝑐1𝑒1 + 𝑒2                                                            (66) 

 

Consequently, the time derivative of Lyapunov’s 

candidate function (63) becomes: 

 𝑉̇1 = −𝑐1𝑒12 − 𝑑1𝑧12 + 𝑒1𝑒2                               (67) 

 

Step 2: The second step consists in choosing the 

actual control signals, 𝑉𝑟𝛼  and 𝑉𝑟𝛽, so that all error vectors [𝑒1, 𝑧1, 𝑒2]𝑇 converge to zero. The time derivative of the 

tracking error 𝑒2  is given by: 

 𝑒̇2 = 𝜇̇1 − 𝑃𝐽 (𝜑̇𝑟𝛼𝑖𝑠𝛽 + 𝜑𝑟𝛼𝑖̇̇𝑠𝛽 − 𝜑̇𝑟𝛽𝑖𝑠𝛼 − 𝜑𝑟𝛽𝑖̇̇𝑠𝛼)  (68) 

 

By substituting (36)-(43) and (61) in (68) one 

has: 

 ė2 = μ2 − PJ (Vrαisβ − 1Ls Vrβφrα−Vrβisα + 1Ls Vrαφrβ)      (69) 

 

where μ2 = 2c1(c1e1 + e2) + Ω̈ref + ṪLJ − PJ (−Rriμαisβ + Rrisαisβ −ωφrβisβ − RsLs φrαisβ + 1Ls Vsβφrα + RrLs iμβφrα − RrLs isβφrα −1Ls ωφrα2 + Rriμβisα − Rrisβisα − ωφrαisα + RsLs φrβisα −1Ls Vsαφrβ − RrLs φrβiμα + RrLs φrβisα − 1Ls ωrφrβ2 −1Ls (Vsαφrβ − Vsβφrα))                                             (70) 

To analyze the error system (𝑒1, 𝑧1, 𝑒2) stability, 

let us consider the following extended Lyapunov function 

candidate: 

 𝑉2 = 𝑉1 + 12 𝑒22                                                            (71) 

 

Its time-derivative along the trajectory of the state 

vector (𝑒1, 𝑧1, 𝑒2) is given by (using (67) and (69)): 
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𝑉̇2 = −𝑐1𝑒12 − 𝑑1𝑧12 + 𝑒2 (𝑒1 + 𝜇2 − 𝑃𝐽 (𝑉𝑟𝛼 (𝑖𝑠𝛽 +
        1𝐿𝑠 𝜑𝑟𝛽)−𝑉𝑟𝛽 (𝑖𝑠𝛼 − 1𝐿𝑠 𝜑𝑟𝛼)))                               (72) 

To ensure the global and asymptotic stability of 

the error system, the control inputs 𝑉𝑟𝛼 , 𝑉𝑟𝛽 should be 

chosen as the following: 

 

𝑒2 [𝑒1 + 𝜇2 − 𝑃𝐽 (𝑉𝑟𝛼 (𝑖𝑠𝛽 + 1𝐿𝑠 𝜑𝑟𝛽)−𝑉𝑟𝛽 (𝑖𝑠𝛼 − 1𝐿𝑠 𝜑𝑟𝛼))] =−𝑐2𝑒22                                                                        (73) 

Where 𝑐2 is a positive design parameter? Then, 

using (62) and (73), one has: 

 

 

[𝑉𝑟𝛼𝑉𝑟𝛽] = [(𝑖𝑠𝛽 + 1𝐿𝑠 𝜑𝑟𝛽) − (𝑖𝑠𝛼 − 1𝐿𝑠 𝜑𝑟𝛼)2𝜑𝑟𝛼 2𝜑𝑟𝛽 ]−1 . [ 𝐽𝑃 (𝑐2𝑒2 + 𝑒1 + 𝜇2)𝑑1𝑧12 + 2𝜑𝑟𝑒𝑓𝜑̇𝑟𝑒𝑓 + 2𝑅𝑟(𝜑𝑟𝛼𝑖𝜇𝛼 + 𝜑𝑟𝛽𝑖𝜇𝛽) − 2𝑅𝑟(𝜑𝑟𝛼𝑖𝑠𝛼 + 𝜑𝑟𝛽𝑖𝑠𝛽)]           (74) 

 

 

Theorem 1 (Main result) 

Consider the closed-loop system composed of the 

DFIG, described by the model (36)-(43) and the nonlinear 

controller defined by the control law (74). The closed-loop 

error system described by (𝑒1, 𝑧1, 𝑒2) respectively given in 

(56, 57, and 65) is globally asymptotically stable 

concerning the Lyapunov function (72). Consequently, all 

errors vanish exponentially fast, whatever the initial 

conditions 

 

Proof of Theorem 1 

 

With the proposed control laws defined in (74), 

the time derivative of the considered Lyapunov’s function 

(71) is given by: 

 𝑉̇2 = −𝑐1𝑒12 − 𝑑1𝑧12 − 𝑐2𝑒22                               (75) 

 

As 𝑉̇2 is a negative definite function of the state 

vector (𝑒1, 𝑧1, 𝑒2), the error system is globally 

asymptotically stable. This completes the proof of 

Theorem 1 

 

5. SIMULATIONS RESULTS 

 

The simulation was performed in 

Matlab/Simulink environment. The performances of the 

proposed new controller, (that accounts for the magnetic 

hysteresis) will be evaluated through several tests of 

robustness. In the next this controller will be referred to as 

HMC-OF. To highlight the supremacy of the HMC-OF, 

three comparisons will be performed: the first test involves 

control strategies with state-dependent optimal flux 

reference over control strategies with a nominal constant 

flux reference (see Table-2). The second test is to prove 

the HMC-OF performances compared to the standard 

controller assuming that the DFIG magnetic characteristic 

is linear (in the next this controller will be referred to as 

LMC-NF), this latter is working under a nominal flux 

reference. The last test will include a comparison between 

the HMC-OF and the LMC-OF, both controllers are 

working under optimal flux reference, but the second is 

based on a linear flux magnetic characteristic. The 

considered DFIG is a 3MW whose characteristics are 

summarized in Table-4. The new controller design 

parameters are in Table-5, and the standard controller 

parameters are in Table-6. 

 

Table-5. Electrical machine parameters. 
 

Electrical Index Value 

Stator/Rotor resistance Rs/ Rr 0.455/0.62Ω 

S/Rotor leakage 

inductance 
Ls/ Lr 0.0083/0.0081H 

Magnetizing 

inductance 
Msr 0.0078H 

Inertia J 0.3125kgm2 

Viscous friction F 6.73×10−1Nms−1 

 

Table-6. New controller parameters. 
 

Index Value 

C1 450 

C2 240 

d1 5000 

 

5.1 Simulation Protocol 

The simulation protocol is set up to take into 

account a significant step variation in the mean wind 

speed, as illustrated in Figure-. The algorithms used to 

calculate the rotor flux and rotor speed references are 

discussed in subsections 4.1.2 and 4.1.1, respectively. 

Many grid faults will be applied to the HMC-OF 

to assess its robustness. To prove its good behaviour 

facing real grid operation mode. These tests are classified 

into two parts: robustness under voltage dips and 

robustness despite the frequency variation. The first 

considered fault is a 3-phase voltage dip, which reduces 

the main voltage value by about 60% and last for 1s [4s-

5s] as presented in Figure-9a. The second test was carried 

out by considering a frequency variation [50-50.5 Hz]. 

This grid fault is introduced at time 1s and last for 0.5s as 

shown in Figure-9b. 
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Figure-8. Wind speed is considered profile. 

 
 

Figure-9a. Network voltage under voltage dips. 

Fig.9b. Network frequency profile. 

 

5.2 Controller Evaluation 

 

a) Supremacy of the HMC-OF strategy over the HMC- 

     NF strategy (Table-2) 

The HMC-OF is implemented using equation 

(74). The corresponding design parameters are given by 

the numerical values of Table-3. Figure-10 illustrates that 

the HMC-OF as well as the HMC-NF track well the given 

speed reference, both are computed using the curve of the 

optimal rotor speed (see Figure-3) ensuring the MPPT 

objective. However, the HMC-OF delivers more precision 

and presents fewer oscillations than the HMC-NF. 

Furthermore, Figure-10 highlights the good robustness of 

the proposed HMC-OF in the presence of the considered 

grid faults (described in Figures 9a-9b), where it is clearly 

shown that the faults don’t affect the tracking objectives. 

 Similarly, Figure-11 and Figure-12 present respectively 

the HMC-OF and HMC-NF rotor flux tracking 

performances. This figure illustrates the good behavior of 

the proposed regulators even under the considered voltage 

dips and frequency deviation. Note that in Figure-11 the 

considered flux reference is variable in function of the 

stator current to optimize the joule losses in the stator (see 

subsection 4.1.1). While in Figure-12 the flux reference 

considered is constant in the order of 1.1wb (equal to the 

nominal flux).  

 

 
 

Figure-10. Speed tracking performance of HMC-OF. 

Solid: speed reference. Dotted: HMC-NF speed 

response. Dashed line: HMC-OF. 

 

 
 

Figure-11. Rotor flux tracking performances. Solid line: 

Rotor flux reference. Dotted line: HMC-OF. 

 

 
 

Figure-12. Rotor flux tracking performances. Solid line: 

Rotor nominal flux reference. Dotted line: HMC-NF. 

 

Since the difference between the HMC-OF and 

the HMC-NF is in the rotor flux level, it is imperial to 

proceed to a power comparison to judge the interest of one 

on the other, for that, a power comparison is realized, 

between the power extracted from the generator working 

with the HMC-OF, and the power extracted from the 

generator working with the HMC-NF, note that both 

power computing systems are considering the 

hysteresis/saturation phenomena. Figure-13 shows clearly 

that the power with the optimal flux reference (Solid line) 

is greater than the power with the steady flux reference 

(Dotted line), proving that with the optimal rotor flux, the 

joule losses of power are less, and the produced power is 

greater. Around 12% more power is collected using the 

optimal flux reference for the selected wind profile, 

attesting to the benefits of this controller. 

The joule losses are obtained considering the 

expression 32 𝑅𝑠𝐼𝑠2, where Is is the norm of the stator 

current. Figure-14 presents the evolution of these losses 

for both controllers HMC-OF and HMC-NF, it is clearly 

shown that the HMC-OF implies lower losses than the 

HMC-NF, especially for weak values of the wind speed. 

This achieves the comparison between the HMC-OF and 

the HMC-NF. 
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Figure-13. Extracted power comparison. Dotted line: 

HMC-NF. Solid line: HMC-OF. 

 

 
 

Figure-14. Joule losses power. Dotted line: HMC-NF 

Solid line: HMC-OF. 

 

b) Supremacy of the HMC-OF strategy over the LMC- 

     NF strategy 

In this subsection the LMC-NF involving 

nominal flux reference is considered for a comparison 
purpose, the controller is obtained simply by considering 

(31): 

 

 the function h constant and equals h=250, this is 

obtained by studying the linearization of the 

hysteresis shape of Figure-2.  

 the flux reference constant and equal to 1.1Wb 

 and the other design parameters with the following 

values that proved to be convenient for this controller: 

C1=1200, C2=420, d1=100. 

 

Figure-15 presents the rotor speed tracking by the 

HMC-OF and by the LMC-NF, it attests clearly to the 

good response of the HMC-OF tracking the speed 

reference. On the other hand, the LMC-NF presents some 

imprecision in low rotor speeds, once the speed rises the 

tracking performances of the LMC-NF improves. Figure-

16 attests that the LMC-NF ensures the tracking of the 

rotor flux reference. However, small oscillations appear 

for different values of wind speed. 

Note that the simulation process of the LMC-NF 

working with the machine taking the hysteresis/saturation 

phenomena into account did take great effort and time to 

deliver such results, in other words no better results could 

be achieved with this configuration. 

 

 
 

Figure-15. Speed tracking performance of LMC-NF. 

Solid: speed reference. Dotted: LMC-NF speed  

response. Dashed line: HMC-OF. 

 

 
 

Figure-16. Rotor flux tracking performances. Solid line: 

Rotor flux reference. Dotted line LMC-NF. 

 

To complete the proof of the great interest of the 

HMC-OF, a power analyze was performed in Figure-17. 

The solid line presents the power delivered by the wind 

turbine working with the HMC-OF, where the power is 

proved maximal since we are operating in MPPT mode. 

The dotted line presents the power delivered by the wind 

turbine controlled by the LMC-NF. One can note that 

there is a power gap from the power delivered by the 

HMC-OF. This analysis proves that with the HMC-OF 

working under real phenomena, one can extract more 

power than with the standard regulator, in low and high 

wind speeds. 

It is well seen in Figure-18 that the HMC-OF 

involves smaller joule losses compared to the LMC-NF. 

This achieves the comparison between the HMC-OF and 

the LMC-NF. 

 

 
 

Figure-17. Extracted power comparison. Dotted line: 

LMC-NF. Solid line: HMC-OF. 
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Figure-18. Joule losses power. Dotted line: LMC-NF. 

Solid line: HMC-OF. 

 

c) Supremacy of the HMC-OF strategy over the LMC- 

    OF strategy 

The LMC-OF has the exact shape of the LMC-

NF, except that: 

 The flux reference is delivered by the optimal flux 

reference generator (see subsection 4.1.1) 

 The controller parameters are given the following 

values that proved to be convenient: 

C1=450, C2=240, d1=100. 

 

Figure-19 presents the rotor speed tracking 

performances, of both HMC-OF and LMC-NF. It is well 

seen that the HMC-OF gives more precision, especially in 

low wind speeds operating mode. Once the speed rises, the 

tracking performance of the LMC-OF improves. 

Figure-20 shows the rotor flux tracking performances of 

the LMC-OF. Where one can attest that the tracking is 

ensured around the nominal rotor flux value, and not 

ensured with great accuracy elsewhere. 

The power comparison of the HMC-OF over the 

LMC-OF attests that with the first controller, more power 

is extracted, especially in low wind speeds operating mode 

as presented in Figure-21.  

It is well seen in Figure-22 that the HMC-OF 

involves smaller joule losses compared to the LMC-OF. 

This achieves the comparison between the HMC-OF and 

the LMC-OF. 

 

 
 

Figure-19. Speed tracking performance of LMC-OF. 

Solid: speed reference. Dotted: LMC-NF speed 

response. Dashed line: HMC-OF 

 

 
 

Figure-20. Rotor flux tracking performances. Solid line: 

Rotor flux reference. Dotted line LMC-OF. 

 

 
 

Figure-21. Extracted power comparison. Dotted line: 

LMC-OF. Solid line: HMC-OF. 

 

 
 

Figure-22. Joule losses power. Dotted line: LMC-OF. 

Solid line: HMC-OF. 

 

6. CONCLUSIONS 

In this paper, we proposed a nonlinear controller 

for the doubly fed induction generator operating in the 

presence of magnetic characteristic saturation and 

hysteresis. The control purpose was to regulate the rotor 

speed and the rotor flux. The references of these latter are 

delivered respectively by an optimal rotor speed reference 

generator, consumed to deliver a speed reference 

corresponding to the maximum available power, and an 

optimal rotor flux reference algorithm, performed to help 

this machine consume less power by the joule affects in 

the stator, and by that to generate more power. For this, 

The HMC-OF described by (74) has been designed using 

the backstepping technique, based on the model defined in 

(36-43). Theorem 1 formally establishes the global 

convergence of the errors 𝑒1 = 𝛺𝑟𝑒𝑓 − 𝛺  and 𝑧1 =𝜑𝑟𝑒𝑓2 − (𝜑𝑟𝛼2 + 𝜑𝑟𝛽2 )  to zero. The controller was analyzed 

to determine sufficient conditions to track well the given 

references. It is proved that both errors vanish whatever 

the operating conditions. The system’s global stability was 

studied and proved by the Lyapunov’s theory. These 

theoretical results were confirmed by simulations on 
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Matlab/Simulink environment involving a wide range 

variation of the wind speed. The robustness of the new 

controller was also evaluated through several tests. Indeed, 

this allowed checking that the new controller maintains its 

good performances despite a grid frequency variation or 

under voltage dips. 
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