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ABSTRACTS 

In the field of hydrology, many researchers have developed time series models. Usually, the modelling uses time 

series data, such as daily rainfall, monthly rainfall, etc. In order to produce a good model, the frequencies used in the model 

must represent the data being modelled. Otherwise, the inaccurate frequencies used to cause the resulting model to be 

inaccurate. Several methods or techniques have been used to estimate the frequencies contained in time series data. These 

methods are the Fast Fourier Transform and Lomb-Scargle periodogram methods. This study used the Lomb-Scargle 

periodogram method to predict monthly rainfall time series data. In this research, the Lomb periodogram results in rainfall 

frequencies. The frequencies are created by using monthly rainfall time series data. Using the frequencies, the dominant 

frequencies can be selected. Periodic modelling of monthly rainfall time series can be adequately simulated using the 

dominant frequencies. The correlation coefficient between the monthly rainfall data with the monthly rainfall model can be 

used to measure the accuracy of the monthly rainfall model.  
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INTRODUCTION 

In recent years, the modelling of time series data 

has been carried out in hydrology. This modelling is 

intended to simulate changes in hydrological variables in a 

time series. Using this time series data model, it is 

expected that future variations of hydrological variables 

can be predicted well. 

It is known that the time series hydrological 

model is assumed to consist of several components, such 

as a trend component, a periodic component, and a 

stochastic component or a random time series component 

[1][2][3][4][5][6]. These components are assumed to 

compose the time series data. For rainfall modelling, a 

trend component is neglected [1] [2] [5].   

The Fourier equation is always used to model the 

periodic components of the time series. However, an 

accurate time series periodic component frequency is 

needed to produce a periodic model close to the existing 

reality. Therefore, in recent years many researchers have 

conducted studies to obtain the correct method to produce 

precise frequencies [7][8][9][10]. Fast Fourier Transform 

(FFT) [11][4][12] and Lomb and Lomb - Scargle 

periodogram methods [13][14][15][16] are methods that 

usually used to get frequencies of periodicities. Then it is 

hoped that this frequency can be used to produce a 

periodic model that can predict hydrological time series in 

the future. 

Many researchers have also studied stochastic 

components in this field [17][18][19]. Many variables in 

the field of hydrology, this component is not too dominant 

compared to the periodic components. Some studies 

consider the stochastic component a random value or 

noise. 

In this study, the Lomb-Scargle periodogram is 

used to produce the dominant period or frequency. This 

dominant frequency is used to model the periodic monthly 

rainfall model. In addition, this periodic model is also used 

to predict the monthly rainfall in the future. 

 

MATERIALS AND METHODS 
 

Study Area 

The study area comes under the humid region of 

the Province of Jakarta, Indonesia. 

 

Collection of Rainfall Data 
Daily rainfall data of the Sukarno Hatta region 

was collected from the Indonesian Meteorological, 

Climatological, and Geophysical Agency, Province of 

Jakarta. Rainfall data for 21 years (1998-2020) was used 

in the study. 

 

Research Methodology 

The mathematical procedure adopted for 

formulating a predictive model has been discussed as 

follows: The principal aim of the analysis was to obtain a 

reasonable model for estimating the generation process 

and its parameters by decomposing the original data series 

into its various components. 

In general, time series data can be decomposed 

into an equation with a deterministic component, where 

this can be formulated into values in the form of 

components that are exact solutions and components 

which is stochastic, where this value is always represented 

as a function consisting of several time series data 

functions. Time series data x(t) is presented as a model 

consisting of the following functions [2][3][4][5][6]: 

 𝑥(𝑡) = 𝑇(𝑡)+ 𝑃(𝑡)+ 𝑆(𝑡)                    (1) 
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Where t is a time, x(t) represents the observed 

rainfall value, T(t) is a trend component, P(t) is a periodic 

component, and S(t) is a stochastic or random component 

or residual component. The trend component describes the 

change in the increase in the value of the data concerning 

the length of the lengthy recording of rainfall data during 

the recording of rainfall data and ignoring the fluctuation 

component with short duration. 

In this study, it is assumed that there is no trend 

for the rainfall time series [1][2][5]. So this Equation can 

be represented as follows: 

 𝑥(𝑡)𝑃(𝑡)+ 𝑆(𝑡)                                                (2) 

 

Equation (2) is the approximate Equation for the 

rainfall data used in this research. This shows that the 

rainfall data consists of periodic (P) and stochastic (S) or 

random components. 

 

Lomb Periodogram 

Lomb-Scargle (L.S.) periodogram [20][21] is a 

method that can be used to find frequencies or recurrence 

of a data series such as rainfall time series. This method 

can be presented in the following Equation 

[22][23][24][25][26]: 

 

𝑃(𝑓) = 122 {[∑ (𝑥𝑖−𝑥̅)𝑛
i=1 cos(𝜔[𝑡𝑖−𝜏])]2∑ cos2(𝜔[𝑡𝑖−𝜏])𝑛

i=1 +[∑ (𝑥𝑖−𝑥̅)𝑛
i=1 sin (𝜔[𝑡𝑖−𝜏])]2∑ sin2(𝜔[𝑡𝑖−𝜏])𝑛

i=1
}  (3) 

 

Here, ω = 2 𝑓is the angular frequency. Where 𝜏 

is defined as follows: 

 

tan(2ω𝜏) = ∑ sin(2ω𝑡𝑖)𝑛
i=1∑ cos(2ω𝑡𝑖)𝑛
i=1                     (4) 

 

This method is generally used by experts in 

astronomy and medical scientists. However, this method 

can also be used in other fields, such as civil engineering, 

with serial data to be analysed. Like the spectral method, 

using the Lomb-Scargle Periodogram, we get a power 

spectrum or Intensity of rainfall series 𝑃(𝑓)in the 

frequency domain. 

 

Periodic Component 

The periodic component P(t) corresponds to an 

oscillating displacement for a given interval [8][5]. The 

existence of P(t) is identified by using the Lomb-Scargle 

periodogram method. The oscillating part indicates P(t) 

using period or angular frequency; some peak periods or 

angular frequencies can be estimated. The frequencies 

obtained from the spectral method clearly show periodic 

variations. Frequencies of the periodic component P(t) can 

also be written in terms of the angular frequency (𝑟). 

Furthermore, an equation can be expressed in Fourier form 

as follows [10][19][27][28][5]: 

 𝑃̂(𝑡)=S𝑜 + ∑ 𝐴𝑟sin(𝜔𝑟 .𝑡)r=k
r=1 + ∑ 𝐵𝑟cos(𝜔𝑟.𝑡)r=k

r=1            (5) 

 

 𝑃(𝑡) is a periodic component, but 𝑃̂(𝑡) is a model 

of the periodic component. 𝑆𝑜is an average value,𝑟  is an 

angular frequency (radian), t is time (day), 𝐴𝑟 and 𝐵𝑟  are 

coefficients of Fourier components, and k is a few 

significant components. 

 

Determination of Periodic Parameters 

The least square method can be applied to 

determine periodic parameters or Fourier coefficients𝐴𝑟 

and 𝐵𝑟 . If 𝑃(𝑡) is a periodic component or observed time 

series data and 𝑃̂(𝑡) is a model of time series data, then 

some squares of errors (𝐸2) can be presented as follows: 

 𝐸2 = ∑ {𝑃(𝑡) − 𝑃̂(𝑡)}2𝑡=𝑛𝑡=1                                   (6) 

 𝐸2 = ∑ { 𝑃(𝑡) − 𝑆𝑜 −∑ 𝐴𝑟sin(𝜔𝑟.𝑡)r=k
r=1 −∑ 𝐵𝑟cos(𝜔𝑟.𝑡)r=k

r=1 }2𝑡=𝑛𝑡=1                    (7) 

 

Where 𝐸2 depends on 𝐴𝑟, 𝐵𝑟 , and 𝑟 . And a 

required condition for 𝐸2is some squares of errors 𝐸2 

should be minimum if satisfying conditions as follows 

[16][5], 

 𝜕𝐸2𝜕𝐴𝑟 = 𝜕𝐸2𝜕𝐵𝑟 = 0                                   (8) 

 

Where r = 1, 2, 3, ... , k. Furthermore, k is several 

frequencies. Based on Equation (8), we can findequations 

as follow: 

 𝑃̂(𝑡) = 𝑆𝑜 + ∑ 𝐶𝑟 𝐶𝑜𝑠(𝑟𝑡 − 𝑟)𝑟=𝑘𝑟=1                   (9) 

 

Equation (9) is a periodic model of monthly 

rainfall series.𝐶𝑟= √(𝐴𝑟)2 + (𝐵𝑟)2 are rainfall amplitudes 

of monthly rainfall series, and 𝑟 = 𝑎𝑡𝑎𝑛 (𝐵𝑟𝐴𝑟) are phases 

of monthly rainfall series.  

 

RESULT AND DISCUSSIONS 

To test the statistical characteristics of the 

monthly rainfall time series, 21 years of data (1998-2020) 

of monthly rainfall from station Sukarno Hatta was taken. 

Variations of monthly rainfall time series for 21 years 

from Sukarno Hatta station can be presented as follows: 
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Figure-1. Monthly rainfall from Sukarno Hatta station. 

 

13 Dominant Frequencies 

Based on rainfall data series from the station of 

Sukarno Hatta (Figure-1), rainfall frequencies can be 

generated by transforming the data using a Lomb-Scargle 

(L.S.) periodogram method, the rainfall series in the time 

domain transformed to be rainfall series in the frequency 

domain. Using 21 years or 264 months of rainfall time 

series, 264 frequencies can be generated, as shown in the 

figures below: 

 

 
 

Figure-2. L.S. period of monthly rainfall from Sukarno 

Hatta station. 

 

 
 

Figure-3. L.S. frequency of monthly rainfall from 

Sukarno Hatta station. 

 

From Lomb periods of monthly cumulative 

rainfall (Figure-2), and by using the L.S. periodogram 

method, dominant periods of rainfall time series can be 

assumed and calculated as, 

 

If Intensity (period (i)) > Intensity (period (i-1)) and 

Intensity (period (i)) > Intensity (period (i+1)) 

then 

period(i) selected as a dominant period 

 

Dominant frequency or period is identified using 

the periodogram's peak intensity. Based on this 

assumption, 13 dominant periods were generated from the 

L.S. periods. In the next step, 13 dominant periods are 

ordered or ranked from maximum to minimum Intensity. 

Thus, dominant periods of rainfall time series are 

presented such as in the following Table-1. 

 

Table-1. 13 Periods and angular frequencies rank based on 

the maximum Intensity. 
 

Rank Intensity 
period 

(month) 

angular frequency 

(degree/month) 

1 14675 12 30.0 

2 2871 6 60.0 

3 1208 25 14.4 

4 1124 48 7.5 

5 1122 37 9.7 

6 1094 4 90.0 

7 1052 10 36.0 

8 901 21 17.1 

9 426 8 45.0 

10 413 94 3.8 

11 211 208 1.7 

12 189 17 21.2 

13 159 28 12.9 

 

 
 

Figure-4. Intensity versus frequency and  

dominant frequency. 

 

Periodic Model Using 13 Dominant Frequencies 

By using 13 dominant frequencies, we can 

compute periodic modelling of monthly rainfall as 

presented as follows: 
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Figure-5. Periodic modelling of monthly rainfall using 

1frequency (R1). 

 

 
 

Figure-6. Periodic modelling of monthly rainfall using 

1frequency (R2). 

 

 
 

Figure-7. Periodic modelling of monthly rainfall using 

1frequency (R3). 

 

 
 

Figure-8. Periodic modelling of monthly rainfall using 

2frequencies (R1-2). 

 

 
 

Figure-9. Periodic modelling of monthly rainfall using 

3frequencies (R1-3). 

 

 
 

Figure-10. Periodic modelling of monthly rainfall using 

4frequencies (R1-4). 

 

 
 

Figure-11. Periodic modelling of monthly rainfall using 

5frequencies (R1-5). 

 

 
 

Figure-12. Periodic modelling of monthly rainfall using 

6frequencies (R1-6). 
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Figure-13. Periodic modelling of monthly rainfall using 

7frequencies (R1-7). 

 

 
 

Figure-14. Periodic modelling of monthly rainfall using 

8frequencies (R1-8). 

 

 
 

Figure-15. Periodic modelling of monthly rainfall using 

9frequencies (R1-9). 

 

 
 

Figure-16. Periodic modelling of monthly rainfall using 

10 frequencies (R1-10). 

 

 
 

Figure-17. Periodic modelling of monthly rainfall using 

11frequencies (R1-11). 

 

 
 

Figure-18. Periodic modelling of monthly rainfall using 

12frequencies (R1-12). 

 

 
 

Figure-19. Periodic modelling of monthly rainfall using 

13frequencies (R1-13). 

 

Correlation coefficients of the periodic modelling 

of monthly rainfall can be arranged based on some 

dominant frequencies, as presented in Table-2, 
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Figure-20. Correlation coefficient versus the number 

of frequencies. 

 

 

Table-2. The correlation coefficient of periodic modelling. 
 

Number Of 

Frequencies 

Coefficient Of 

Correlation 
Rank 

1 0.5810 R1 

1 0.2570 R2 

1 0.1667 R3 

2 0.6353 R1-2 

3 0.6526 R1-3 

4 0.6690 R1-4 

5 0.6870 R1-5 

6 0.7047 R1-6 

7 0.7148 R1-7 

8 0.7302 R1-8 

9 0.7372 R1-9 

10 0.7422 R1-10 

11 0.7432 R1-11 

12 0.7452 R1-12 

13 0.7469 R1-13 

 

Dominant Frequencies of Rainfall Residue 

The residue of the monthly rainfall model using 

the 13 dominant frequencies is presented as shown in 

Figure-21 below: 

 

 
 

Figure-21. The residue of the periodic modelling of 

monthly rainfall for 13 frequencies. 

 

To get a better monthly rainfall model. We 

should get more dominant frequencies. The dominant 

frequencies can be decomposed from the residue of the 

periodic rainfall model that has been generated. Using the 

Lomb periodogram method resulted in frequencies and 

periods of monthly rainfall residues such as in Figure-22 

and Figure-23. 

 

 
 

Figure-22. Lomb periods of monthly rainfall residue. 

 

 
 

Figure-23. Lomb frequencies of monthly rainfall residue. 

 

From Figure-22, Figure-23, and by using 

Equation (38), 29 dominant frequencies of monthly 

rainfall residue are calculated and presented in Table-3 as 

follows: 
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Table-3. 29 Dominant frequencies of rainfall residue. 
 

Rank Intensity 
period 

(month) 

angular frequency 

(degree/month) 

1 1175 14.3 25.17 

2 1065 10.4 34.62 

3 558 2.1 171.43 

4 488 6.5 55.38 

5 486 13.3 27.07 

6 408 2.3 156.52 

7 402 4.2 85.71 

8 386 6.3 57.14 

9 364 3 120.00 

10 358 2.5 144.00 

11 314 9.6 37.50 

12 309 3.7 97.30 

13 284 4.4 81.82 

14 243 15.5 23.23 

15 233 5.6 64.29 

16 212 5 72.00 

17 206 22.4 16.07 

18 180 7.2 50.00 

19 160 8.9 40.45 

20 144 11.5 31.30 

21 121 20 18.00 

22 120 6.7 53.73 

23 103 7.6 47.37 

24 93 3.3 109.09 

25 89 18.2 19.78 

26 72 8.5 42.35 

27 40 5.9 61.02 

28 24 12.5 28.80 

29 7 26.2 13.74 

 

They use 42 frequencies (13 frequencies + 29 

frequencies from rainfall residue) generated periodic 

modelling of monthly rainfall time series as presented in 

Figure-24. 

 

 
 

Figure-24. Periodic modelling of monthly rainfall using 

42 dominant frequencies. 

 

Using 13 frequencies, the correlation coefficient 

is about 0.7469 (Figure-19), but by using 42 frequencies, 

the correlation coefficient increases to 0.8666 (Figure-24). 

It indicates that periodic modelling using 42 dominant 

frequencies is better than 13 dominant frequencies. This is 

not only indicated by the correlation coefficient but also 

can be seen by the Root Mean Square of error (RMS error) 

of the model. The model using 13 frequencies gives an 

RMS error of about 67.0171 mm, but the model using 42 

frequencies makes an RMS error smaller, which is about 

53.6957 mm. 

Selection of dominant frequencies based on 

maximum Intensity or power spectrum is the most 

appropriate way to get the suitable frequencies. It is 

indicated in Figure-5, Figure-6, Figure-7, Figure-20, and 

Table-2. Figure-5 is the periodic modelling using 1 

frequency with the 1
st
 maximum Intensity. Figure-6 uses 1 

frequency with the 2
nd

 maximum Intensity, and Figure-7 

uses 1 frequency with 3
rd

 maximum Intensity. Even 

though the models all use only 1 frequency, the model in 

Figure-5 indicates a best fit than the others, where the 

correlation coefficient is about 0.5820 > 0.2570 > 0.1667.   

 

Prediction Modelling of Monthly Rainfall 

To illustrate that the periodic model using the 

Lomb-Scargle periodogram can be used to predict monthly 

rainfall time series, 132 months of rainfall time series are 

used to predict the next 132 months. Using 132 months of 

the rainfall series and Lomb-Scargle periodogram method 

are decomposed frequencies and periods as presented 

below? 

 

 
 

Figure-25. Lomb periods of rainfall time series using 132 

data lengths. 

 

 
 

Figure-26. Lomb-Scargle frequencies of rainfall time 

series using 132 data length. 

 

Using the same way as before, 22 dominant 

frequencies have been extracted, as presented below: 

 

-350

150

650

1150

1650

-1000

-500

0

500

1000

0 20 40 60 80 100 120 140 160 180 200 220 240 260

re
si

d
u

e
 (

m
m

) 

m
o

n
th

ly
 r

a
in

fa
ll 

(m
m

) 

time (month) 

data P S

0

5000

10000

15000

20000

1 10 100 1000

In
te

n
si

ty
 

period (month) 

0

5000

10000

15000

20000

1 10 100 1000

In
te

n
si

ty
 

angular frequency (degree/month) 



                                  VOL. 18, NO. 8, APRIL 2023                                                                                                                 ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                933 

Table-4. Periods and angular frequencies rank monthly rainfall using 132 data lengths. 
 

Rank Intensity Period (month) 
angular frequency 

(degree/month) 

1 16144 12 30.00 

2 3540 23.6 15.25 

3 2988 6 60.00 

4 1542 2.5 144.00 

5 1243 4 90.00 

6 1220 9.1 39.56 

7 1100 10.6 33.96 

8 916 2.1 171.43 

9 899 5.1 70.59 

10 832 8 45.00 

11 819 17.5 20.57 

12 804 14 25.71 

13 714 3 120.00 

14 672 2.8 128.57 

15 602 2.3 156.52 

16 586 7.4 48.65 

17 583 3.6 100.00 

18 505 9.9 36.36 

19 316 6.6 54.55 

20 304 3.3 109.09 

21 217 5.4 66.67 

22 182 4.4 81.82 

 

Using 22 dominant frequencies, periodic 

modelling of monthly rainfall time series and predicted 

periodic modelling of monthly rainfall time series have 

been generating such as illustrated in Figure-27 as follows: 

 

 
 

Figure-27. Predicted periodic modelling of 

monthly rainfall. 

 

 
 

Figure-28. Correlation between recorded rainfall (data) 

versus computed rainfall. 
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Figure-29. Correlation between recorded rainfall (data) 

versus predicted rainfall. 

 

The correlation coefficient (r) of the periodic 

modelling of monthly rainfall time series (computed 

rainfall) using data length of 132 months with recorded 

rainfall data (r) is about 0.8122. However, the correlation 

coefficient of the predicted periodic modelling of monthly 

rainfall time series (predicted rainfall) with recorded 

rainfall data (r) is about 0.5302.  

The validation model indicated that computed 

rainfall correlates well with the recorded rainfall data. The 

verification model indicated that predicted rainfall or 

forecasting monthly rainfall has a good enough 

correlation.  

 

CONCLUSIONS 

The periodic modelling of monthly rainfall time 

series has been modelled using 42 dominant frequencies 

from the Lomb-Scargle periodogram; in order to do that 

needed, two steps. The first step, 13 frequencies are 

extracted from the monthly rainfall time series. In the 

second step, 29 frequencies are extracted from the residue 

of the periodic modelling of monthly rainfall time series. 

Periodic modelling using 42 dominant frequencies gives 

better results than only 13 dominant frequencies. In 

modelling monthly rainfall time series, the correlation 

between the calculated periodic modelling of monthly 

rainfall with recorded monthly rainfall is about 0.8122. In 

predicting monthly rainfall time series, the correlation 

between the predicted periodic modelling of monthly 

rainfall and with recorded monthly rainfall time series is 

about 0.5302. 
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