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ABSTRACT 

Although the application of Discrete Event Simulation (DES) as a validating tool may seem counterproductive, 
routinely reviewing an improvement that has been installed is crucial for industries to decide whether a process is optimal, 
requires further refinement, or must be discontinued and replaced with a better alternative. The objective of this paper is to 
demonstrate DES as a decision-making tool by validating the improvements of a mechanical assembly line for Printed 
Circuit Board Assembly (PCBA) manufacturing. As a case study, parameters connected to Overall Equipment 
Effectiveness (OEE) namely availability, performance, and quality were gathered from a PCBA mechanical assembly line 
in Company A that has shifted their primary assembly tools from conventional electrical torque screwdrivers into 
programmable torque screwdrivers. Through the data collection step, it was observed that the OEE improved upon 
implementing a programmable torque screwdriver. The assembly lines were then modelled in the DES system and 
information pertaining to OEE was gathered and analyzed to aid in validating the enhancement in the manufacturing line. 
Based on the simulation, the results obtained confirm that the OEE improves through the implementation of a 
programmable torque screwdriver, signifying that DES is a suitable tool to help validate an improvement in a process.  
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1. INTRODUCTION 

As of today, a prominent phrase and subject 
among those engaged in areas pertaining to professionals 
and academicians alike is the fourth industrial revolution - 
commonly referred to as Industry 4.0 [1]. This 
transformation of how the industry functions emphasized 
the application of digitalized tools to enable real-time data 
collection and analysis, contributing beneficial knowledge 
to the production system [2, 3]. As per a study carried out 
by Rodic, some of the major advancement patterns and 
technologies that empower Industry 4.0 are simulation 
modelling, Autonomous robots/systems, horizontal and 
vertical system integration through new standards, green 
it, big data, and analytics, augmented reality, cyber 
security, industrial internet of things, additive 
manufacturing, and the Cloud [4]. 

The approach of discrete event simulation 
modelling has been applied extensively to measure how 
manufacturing processes perform. These models 
contribute to the management team of an industrial unit 
the capability to review diverse manufacturing procedures 
prior to the construction of a factory or prior to a major 
transformation in the plant. These procedures include, but 
are not limited to, experimenting on a newly proposed 
manufacturing process, revision of factory layout, 
maintenance carried out on equipment and a site’s 
automation outline. Therefore, discrete event simulation 
carries on to being one of the major methods of measuring 
the performance of a manufacturing system [5]. 

Several studies relevant to the execution of 
discrete event simulation in the field of manufacturing 
schemes has already been established whereby five of 

them have been reviewed as follows. In 2003, Smith 
presented a review about implementing simulation for 
manufacturing design and operation. The sources of his 
study were categorized as manufacturing structure design, 
operation of a system, and the language of simulation [6]. 
A well-organized review encompassing a huge range of 
papers between 1997 and 2006 related to the topic of 
simulation was produced in 2010 by Jahangirian et al. 
which presents a larger scope of simulation methods 
utilized in manufacturing and business [7]. A thorough 
review of publications between 2002 and 2013 that is 
connected to discrete event simulation predominantly in 
the manufacturing sector was done by Negahban & Smith 
in 2013 that outlines the literature into three general 
categories of manufacturing system design, manufacturing 
system operation, and simulation language or package 
development [8]. Sarda and Dilgalwar performed an 
analysis of a vehicle as-assembly line in 2018 using 
discrete event simulation where the paper contributes to an 
approach to analyzing a vehicle assembly line of an 
automobile factory and provides an appropriate method to 
manage the study of complicated operations of a 
manufacturing procedure [9]. Renteria-Marquez et al. 
carried out a heijunka study for an automotive as-assembly 
using the aid of discrete event simulation in 2020. Their 
work introduces a procedure to model and simulate the 
production floor, warehouse, and system of material 
handling of an automotive assembly plant with a high 
level of accuracy [10].  

Despite discrete event simulation being well 
known to be implemented in the manufacturing sector to 
gauge the health of an operation or its future performance, 
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its usage as a tool to validate an improvement is very 
minimal. This study directs its focus on the aspect of 
process improvement validation via discrete event 
simulation. 

To aid in this assessment, a case study was taken 
from company A to validate the improvement in the 
mechanical assembly line for Product X, after migrating 
from the usage of conventional torque screwdrivers to 
programmable torque screwdrivers. Programmable torque 
screwdrivers are a more technologically advanced version 
of screwdrivers in terms of usage and accuracy. The 
advantages of programmable screwdrivers compared to 
conventional tools are multiple torque outputs with one 
tool, incorrect part detection, missing or extra washer 
detection, incorrect torque output detection, the capability 
of automatic program selection as well as storing 
tightening data. 
 
2. MATERIALS AND METHODS 

A literature study was performed before 
proceeding with the case study associated with the 
hypothesis of utilizing discrete event simulation as a tool 
to validate the enhancement of a manufacturing system. 
The investigation was carried out to thoroughly understand 
the essential knowledge contained in this subject. The 
information explained throughout this chapter will 
function as the fundamental theme of this research and act 
as a groundwork for this research. 
 

2.1 Discrete Event Simulation 
Planning a system that is responsible for 

manufacturing is a very complex process and analyzing it 
to assess improvement aspects is even more challenging. 
Upon assessing survey literature that was established prior 
to this study, it was discovered that a sizeable quantity of 
corporation surveys regarding the utilization of operations 
research techniques, commonly stated discrete event 
simulation as one of the most well-known methods that are 
currently being practiced [11-13]. From the time the days 
when computer simulation was at its infancy stage in the 
1950s, the multiplying of simulation-based software and 
the persistent growth in computing has supported in 
placing it close to the apex of the ‘modelling chart’ [14].  

Various developments in the aspects of how 
simulations are improved and applied have been observed 
in the preceding 50 years [14].  Discrete event simulation 
has been known to aid in devising a manufacturing system 
[15] and its efficiency [16], to monitor the stability of the 
system [17], to overcome setbacks with regard to the 
scheduling of the production process [18] as well as to 
study the implementation of Automated Guided Vehicle 
inside the system [19]. 

Contained inside the field of operational research 
are numerous analytic methods.  Nonetheless, simulation 
methods such as discrete event simulation are regarded 
higher when it is compared to other methods for instance, 
game theory, mathematical modelling [20], scenario 
analysis, and Petri nets [21, 22] that are suitable for the 
process of modelling and resolving specific parameters 
such as production planning and sustaining as well as 

recognition of bottlenecks and unnecessary time-based 
interruption in the system [23-25].  
Discrete event simulation comprises a compilation of 
methods that upon application to the research of a discrete 
event system that is dynamic, produces a progression 
better known as sample paths which embodies its 
performance. The compilation contains modelling 
concepts to conceptualize the crucial information of a 
system into a comprehensible collection of primacy and 
mathematical connections between its components, 
custom-tailored software to aid in the transformation of 
these connections into a set of codes that can be fulfilled 
by a computer to produce the obligatory data of the sample 
path, techniques to translate the information obtained into 
an approximation of the system functionality and 
procedures for gauging the competency level of these 
approximations on a real, but unspecified, behaviors of a 
structure [26]. 

Discrete event simulation primarily carries the 
benefit of possessing the capability to perform 
investigations that would be tedious and complicated to be 
carried out on a manufacturing system that is real. 
Conventionally, before the real system is implemented, 
discrete event simulation is the instrument that has been 
utilized to carry out planning and analysis [27]. 
Constructing a simulation model assists in providing 
information that would ultimately contribute to the 
enhancement of the real system [28]. A few of the 
recognized software instruments related to discrete event 
simulation to execute a system modelling are FlexSim, 
BlockSim, Plant Simulation, ARENA, and Enterprise 
Dynamics [29-33]. 
 
2.2 Manufacturing System and Conceptual Modelling 

A manufacturing system that retains a high level 
of complexity or better known as a Flexible 
Manufacturing System (FMS) is a unified process that 
uses the aid of computer-controlled involvement of 
equipment that handles materials in an automated manner 
as well as devices that are numerically controlled (NC) 
that can work on a medium-sized quantity of various part 
types in a simultaneous manner [34]. 

The situation of manufacturing where FMS is 
appropriate to be implemented has been established ever 
since 1973. Examples of the situations whereby the 
adoption of FMS would prove to be productive are a huge 
range of parts that require high precision are machined 
(commonly in job shop), a comparatively large quantity of 
machines utilizing direct numerical control (DNC) are 
involved, movement of work pieces as per the flow of 
input, process, and output in regards with the FMS via a 
selected type of automated material handling procedure 
and the total handling of the FMS via on-line computer 
control with situations of different parts production mixes 
and urgencies [35]. 

To devise a Flexible Manufacturing system, 
several elements need to be intertwined together to ensure 
the system is viewed from a wide and thorough angle and 
to ensure a proper design is achieved. The factors that 
contribute a crucial role in a successful design are 
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manufacturing tactics, system design, capacity planning, 
performance gauging, management strategies, risk 
evaluation, and scenario breakdown [36]. 

Conceptual modelling is the process of 
hypothesizing a model based on a real proposed system 
[37]. This process is practically the element that holds the 
utmost significance in a simulation-based process. 
Throughout the development of conceptual modelling, the 
progression goes according to the flow of identifying and 
comprehending the problem, to the constraints of the 
model followed by what aspects must be studied within 
the model as well as how it is to be investigated [38]. 

The approach that is used to present FMS in 
mathematical terms is through the assistance of IDEF 
(Integration DEFinition), a collection of graphical 
modelling procedures set up to properly denote and link 
crucial elements of an organization’s engineering project 
[39]. This modelling language is then applied to a function 
model system such as SADT (Structured Analysis and 
Design Technique) [40], Object Flow Diagram [41], 
CIMOSA (Computer Integrated Manufacturing Open 
System Architecture) [42], and GRAI (Graphs with 
Results and Actions Inter-related) [43]. There is also an 
option to further developed GRAI into GRAI Integrated 
Methodology (GIM) [44]. 
 
2.3 Key Performance Indicators 

For many decades, the procedure of appraising 
the functionality of a system in the industry seized the 
focus of those in the industrial sector and researchers alike 
[45]. Available currently are a few structures and schemes 
within the said setting. For instance, Process Performance 
Measurement Systems (PPMS) is a performance 
measurement structure that can be divided into two 
varying stages. The first stage pays attention to gauging 
the performance aspect individually, relative to the 
flexibility, cost, and time factors. In contrast, the other 
level comprises an array of performance indicators that 
supports the efficiency and effectiveness of commerce as a 
single entity [46].  

Extensive endeavors have been carried out to lay 
out a universal context related to the identification of a 
collection of key performance indicators (KPI) in the 
manufacturing sector. Based on a discovery obtained by 
Bennet [47], an iterative model that is a closed loop 
containing eight steps was constructed to aid in identifying 
KPIs in the manufacturing industry. This said model holds 
the capability to carry out constant monitoring of how the 
industry performs through the assistance of the preferred 
indicators it decides whether to reduce or increase new 
performance indicators upon arriving at the conclusion 
point of every cycle according to how crucial and relevant 
their aspects are [48]. 

Established through a study by the authors in 
[48], five classes of indicators were recognized via the aid 
of a closed-loop model namely efficiency, quality, safety 
and environment, production plan tracking, and issues 
related to employees. By selecting and focusing on the 
classes of efficiency and quality, based on the research 
carried out by Dhillon et al. [49], more key performance 

indicators can be placed to carry out the performance 
measurement at a scale of higher detail. Some of the 
indicators that may be utilized in the manufacturing 
industry performance assessment are Overall Equipment 
Effectiveness (OEE), Work In Progress (WIP), 
manufacturing lead-time (MLT), average waiting time for 
part preparation, production throughput, output queue 
length, the number of deadlock incidents and mean 
tardiness and rate of tardy parts. 
 
2.4 Overall Equipment Effectiveness 

The foundation for the growth of the Japan 
Institute of Plant Maintenance (JIPM) was set by 
Nakajima and others [50]. They researched the aspect of 
preventive maintenance (PM) measures that were carried 
out in the US during the times upon end of World War 2 
and carried on assimilating the custom in a manner that 
proves to be suitable to be implemented for the 
manufacturing industry residing in Japan [51]. 
 While in Japan during the 1970s, JIPM devised a 
concept known as Total Productive Maintenance, or TPM 
for short. This concept was discovered from the 
knowledge gained via the real-world proficiency of 
hundreds of Japanese corporations. Functioning as a 
concept that embodies corporate change, TPM 
incorporates methods in defining overall equipment 
effectiveness (OEE). OEE is defined by the elements of 
throughput reduction which is a result of production losses 
such as downtime. The three aspects that influence 
effectiveness are availability, performance, and quality. 
The relationship between OEE and the 3 parameters are 
[52]:  
 OEE = Availability × Performance × Quality    (1) 
 

The details of each element are explained below 
in accordance with the study made by Zammori et al. [53]. 
Availability is the appraisal between the amount of time an 
equipment is actually produced and the time it was 
scheduled to produce. Performance indicates the judgment 
between the real production of equipment and the 
expected production at the same time. Quality signifies the 
segment of products produced that are within the given 
specifications. 

The current benchmark when it pertains to the 
desirable value of OEE is widely known as the world-class 
OEE. These values can be utilized to measure the 
performance of the maintenance procedure by the 
manufacturing body, as well as to enhance the 
maintenance process and implement continuous 
improvement in the system.  

As per Table-2 below, the numbers for a world-
class OEE, availability, performance, and quality factors 
are 85 percent, greater than 90 percent, greater than 95 
percent, and greater than 99 percent respectively [54]. If 
an evaluated OEE is equivalent to a world-class OEE, it 
indicates that the manufacturing process is performing in 
an excellent condition whereas if the OEE value is lower 
than the world-class OEE, immediate enhancement in 



                                  VOL. 18, NO. 9, MAY 2023                                                                                                                   ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1081 

terms of maintenance strategy is needed in order to sustain 
the process [54]. 

 

Table-1. World class OEE standards. 
 

OEE Factors World Class Rate (%) 

Availability >90 

Performance >95 

Quality >99 

OEE 85 

 
Based on a study done by Dal i., states that the 

adequate and realistic number for an OEE would be 
greater than 50 percent and more beneficial as an 
acceptable benchmark [55]. Ericsson states that a 
satisfactory OEE level may vary from 30 percent to 80 
percent [56]. For this study, due to the implementation of a 
programmable torque screwdriver being in an infancy 
stage, the OEE levels are expected to not achieve the 
world-class standard. Hence, the OEE will be gauged 
purely in terms of increments. 

To calculate each factor that contributes to the 
OEE, the formulations stated in [57] are shown below: 
 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒(ℎ)𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑇𝑖𝑚𝑒(ℎ) × 100                          (2) 

 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒 =  𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒                                          (3) 
 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒(ℎ)×𝐴𝑐𝑡𝑢𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡(𝑈𝑛𝑖𝑡𝑠)𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒(ℎ)                          (4) 

 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑈𝑛𝑖𝑡𝑠)−𝐷𝑒𝑓𝑒𝑐𝑡𝐴𝑚𝑜𝑢𝑛𝑡(𝑈𝑛𝑖𝑡𝑠)𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑈𝑛𝑖𝑡𝑠) × 100                          (5) 

 
2.5 Gauging Current Process and Preliminary Discrete  

      Event Simulation Modelling 

The live assembly line in Company A was 
assessed and data that related to availability, performance, 
and quality were recorded. For this case study, the 
information was narrowed down to PCBA with part 
number X (Model X) which has high complexity and 
frequently contributes to yield loss. Manufacturing of X 
comprises 64 screws and the screws are assembled in 8 
different phases which are used to attach parts such as 
standoffs, heatsinks, and handle brackets. The data were 
collected across all shifts and the average number was 
considered during the OEE calculation stage. 

Upon completing the analysis of the live 
manufacturing line’s status, two separate DES models of 
the assembly lines using conventional electrical torque 
screwdrivers and programmable torque screwdrivers were 
executed as per the flowcharts shown in Figure-1 below. 
The parameters of the models were set to reflect the actual 
assembly line as closely as possible and the acceptance 
criteria of ± 5% for availability, performance, quality as 
well as OEE was set. This acceptance criterion was 

established to indicate whether the results from the DES 
models are sufficiently firm to be implemented as a 
validation tool to assess the improvement of a 
manufacturing process.  

 

 
 

Figure-1. Comparison of process flow between the 
mechanical assembly of conventional torque screwdriver 
and programmable torque screwdriver. 
 
3. DATA COLLECTION AND DISCUSSIONS 

Upon collecting the required information for 
manufacturing Model X at Company A via the 
conventional tool and programmable tool, they were 
compiled in Table-2. By implementing the formulae based 
on Eq. (1), (2), (3),, (4) and (5), the OEE of both processes 
was calculated and measured. 
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3.1 Data of Model X’s Assembly Process 

 

Table-2. OEE Comparison of actual mechanical assembly process for  
Model X at Company A. 

 

Weekly Components Conventional Tool Programmable Tool 

Time-Related Factors (Hours) 

Total Available Time 144.00 144.00 

Planned Shutdown 36.00 36.00 

Scheduled Operating Time 108.00 108.00 

Downtime Loss 21.00 7.00 

Actual Operating Time 87.00 101.00 

Ideal Cycle Time per 1.00 1.00 

Output Related Factors (Units) 

Total Units 80 100 

Good Units 76 99 

Defective Units 4 1 

OEE Factors 

Availability 0.604 0.701 

Performance 0.920 0.990 

Quality 0.950 0.990 

OEE 52.78% 68.75% 

OEE Improvement 23.23% 

 
According to Table-2 above, all the data collected 

are factored to cover the span of a weekly basis and the 
time elements are all in hours. The scheduled operating 
time for both tools is similar as these factors are pre-
planned by Company A. However, the actual operating 
time differs due to the downtime loss which occurs 
without any earlier notice. Historically, conventional 
torque screwdrivers in Company A experience a drift in 
the torque output on three occasions annually. Each 
occurrence requires up to 7 days as the maintenance has to 
be carried out by a certified external calibrator. The 
programmable torque screwdriver only requires an annual 
calibration due to the requirement by the customer of 
Model X. The ideal cycle time was obtained from the 
Industrial Engineering department of Company A.  

For output-related factors, the numbers were 
obtained by measuring and obtaining the average weekly 
output as well as average weekly defects for Model X. The 
output when a programmable torque screwdriver is 
utilized is 20% higher than when a conventional torque 
screwdriver is used. The average weekly defect rate 
observed from the data compiled is 5% for the 
conventional tool and 1% for the programmable tool. 

From the data obtained, it can be concluded that all 
components of OEE experience an improvement upon 
implementation of the programmable torques screwdriver. 
Although the numbers are not on par with the world-class 
OEE, there is still room for enhancement via the 
programmable tool. 
 
3.2 DES Modelling 

The DES software FlexSim was utilized to 
establish models to reflect the assembly line for Model X 
in Company A. The models were generated as per the flow 
in Figure-1. Screenshots of the models can be referred to 
in Figure-2 and Figure-3 below. The models were set to 
run for 108 hours which is the scheduled operating time 
per week. A downtime of 21 hours (Figure-3) and 7 hours 
(Figure-5) was set for the simulations of conventional and 
programmable torque screwdrivers respectively. A defect 
rate of 5% was set at the Inspection port (Figure-2) for the 
model of conventional torque screwdriver and a rate of 1% 
was set at the Mechanical Assembly_ Inspection port 
(Figure-4) of the programmable torque screwdriver mode. 
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Figure-2. DES Model of assembly via conventional torque screwdriver. 
 

 
 

Figure-3. Parameter set up for DES model of assembly via conventional torque screwdriver. 
 

 
 

Figure-4. DES Model of Assembly via Programmable Torque Screwdriver. 
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Figure-5. Parameter Set Up for DES Model of Assembly via Programmable Torque Screwdriver. 
 

Based on the simulation that was carried out, the 
throughput is recorded, and Table-3 was fabricated to 
compile all the required information. Upon compilation, 
the OEE factors were also determined. To compare the 
variance between the actual data and simulated data, the 

information was compared and arranged in Table-4. As 
per section 2.5 of this study, the acceptance criteria for the 
variance between the actual and simulation manufacturing 
line is ± 5%.  
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Table-3.  OEE comparison of simulated mechanical assembly process for 
Model X at Company A. 

 

Weekly Components Conventional Tool Programmable Tool 

Time-Related Factors (Hours) 

Total Available Time 144.00 144.00 

Planned Shutdown 36.00 36.00 

Scheduled Operating Time 108.00 108.00 

Downtime Loss 21.00 7.00 

Actual Operating Time 87.00 101.00 

Ideal Cycle Time 1.00 1.00 

Output Related Factors (Units) 

Total Units 79 99 

Good Units 75 98 

Defective Units 4 1 

OEE Factors 

Availability 0.604 0.701 

Performance 0.908 0.980 

Quality 0.950 0.990 

OEE 52.12% 68.06% 

OEE Improvement 23.43% 

 
Table-4.  OEE factors comparison between actual and simulated mechanical assembly process for  

Model X at Company A. 
 

OEE Factors 

Conventional Programmable 

Actual Simulated 
Percent Error 

(%) 
Actual Simulated 

Percent Error 

(%) 

Availability 0.604 0.604 0.00% 0.701 0.701 0.00% 

Performance 0.920 0.908 1.30% 0.990 0.980 1.01% 

Quality 0.950 0.950 0.00% 0.990 0.990 0.00% 

OEE 52.79% 52.10% 1.31% 68.71% 68.01% 1.02% 

 
Based on Table-4 above, the percent error of each OEE 
component is lesser than ± 5%. This highly indicates that 
the DES model reflects the actual scenario. Through this 
simulation, we can conclude that DES is an appropriate 
tool to validate the improvement in terms of OEE that 
were observed in the manufacturing line upon 
implementing the programmable torque screwdriver. 
 
4. CONCLUSIONS 

Although the application of DES as a validating 
tool may seem counterproductive, regularly studying an 
improvement that has been established is vital for 
industries to determine if a process is optimal, requires 
further progress or must be discontinued and substituted 
with a better method.  

Through this case study, the current OEE 
parameters of assembling Model X in Company A via 
conventional torque screwdriver and programmable torque 

screwdriver were recorded and computed with the 
conventional method yielding 52.79% whereas the 
programmable method produced 68.71% OEE.  

Upon obtaining the OEE of the actual process, 
the flow of the processes was modelled into a DES system, 
and from there; it was ensured that the results generated by 
the system were within ±1% of the actual manufacturing 
procedure. The simulation was able to produce OEE of 
52.10% and 68.01% for the conventional and 
programmable methods respectively.  

Upon calculating the variances within the actual 
and simulation process, the results are well within the 
acceptance criteria of ±5% percent error whereby the 
results demonstrate values of 1.31% and 1.02% of percent 
error between the actual and experimental data for the 
conventional and programmable processes respectively. 
This set of data indicates that the implementation of a 
programmable torque screwdriver does indeed further 
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increase the OEE of the mechanical assembly process, 
whilst showing the gaps that can be filled to further 
improve its current performance. 

As per the results from the study, we can 
conclude that DES is a suitable tool to enable cross-
checking of data and validation of an improvement that 
was implemented thus denoting the appropriate direction 
that needs to be taken; to maintain the process or to further 
enhance it. 
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