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ABSTRACT 

In this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under 
the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. 
Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design 
beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can 
be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained 
results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys 
R19.0, and very good agreement has been shown. It was found that the maximum vibration occurs when the load speed is 
about 0.58 of the critical speed of the beam. Furthermore, the vibration amplitude resulting from a moving load can 
amplify to 1.65 times the deflection produced by an equivalent static load. 
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1. INTRODUCTION 

The need to study the moving load problems did 
not appear until the collapse of Stephenson’s Bridge in 
England in 1847. where it was believed that the effects of 
moving loads were the cause of such failure, and this gave 
the motivation to study such problems [1]. Today, the 
moving load problem has become the subject of numerous 
studies related to the design of many real-life applications. 
For example, bridges, cranes, rails, tunnels, pipelines, etc. 
[2 and 3]. A review of many of the published works 
related to structural problems caused by moving loads can 
be found in [3]. Furthermore, this work presents several 
important concepts related to moving load problems. 
Generally, the governing equation of the vibration caused 
by a moving load can be derived based on either 
Timoshenko beam theory [4–8] or Euler-Bernoulli beam 
theory [9–16]. Unfortunately, the obtained equations for 
different applications have no exact solutions. Therefore, 
approximated analytical solutions or numerical methods 
have been extensively used in the literature. Usually, these 
solutions are complicated to achieve. This is why the need 
to find a simple and accurate solution has become 
necessary. This paper introduces such a solution, which is 
characterized by simplicity in handling and confidence in 
results. 
 
2. LITERATURE REVIEW 

The following review presents several published 
works related to the moving load problem. The review 
shows the main research lines, the mathematical 
approximations, and the experimental procedures available 
in the literature.  

For example, Katz et al. [17] investigated the 
dynamic stability and transverse vibration of a beam under 

a moving load of constant velocity. They determined that 
a continuous sequence of passing loads could be the cause 

of the instability. And a single moving load passing over 
and leaving the beam cannot cause any instability. They 
used Galerkin's method to obtain the governing differential 
equations of periodic coefficients. The obtained 
differential equations were solved using numerical 
methods. 

Furthermore, Yavari et al. [18] presented a 
numerical approach to analysing the dynamic response of 
a Timoshenko beam. This approach was called the discrete 
element technique, where the continuous flexible beam 
was replaced by several rigid bars and joints. The results 
of this approach were compared with those obtained from 
the numerical solutions of Euler-Bernoulli beams and 
Timoshenko beams. The effect of beam thickness and 
moving load velocity on the dynamic response of the 
beams under moving loads was studied.  

Alternatively, Bilello et al. [19] studied the 
dynamic response of a small-scale bridge model subjected 
to the moving load effect. The analysis was developed 
based on Euler–Bernoulli beam theory. The proposed 
solution was validated by doing several experiments using 
a small-scale model that is designed to satisfy both static 
and dynamic excitations. It can be noted that the 
investigated load speeds ranged from 0.85 m/s to 2.1 m/s, 
which are considered very low, and the dynamic effect of 
the load is almost neglected.  

However, Aied and Gonzalez [20] used a simply 
supported beam made of viscoelastic material to study the 
variation in its strain rate and the modulus of elasticity 
under the effect of a moving load. They discussed the 
effect of the load speed and magnitude on the deformation 
and strain of the beam. They concluded that the variations 
in strain and deformation are smaller than five percent for 
loads at low speeds, which are much lower than the critical 
speed of the beam.  
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Similarly, Hassan and Sadiq [21] introduced an 
experimental and numerical study of the vibration of a 
beam under a constant-speed moving load. Two load 
speeds were investigated: 0.2 m/s and 0.25 m/s. A finite 
element model (FEM) of a beam under a moving load is 
established using ANSYS software. Despite employing an 
exceptionally slow load, the authors arrived at the 
conclusion that the vibration generated in the beam due to 
the moving load could exhibit a notably greater magnitude 
compared to what was observed with stationary loads.  

Additionally, Froio et al. [22] introduced a 
numerical model for describing the vibration of a simply 
supported beam of elastic foundation subjected to a 
moving load. The Euler–Bernoulli theory of beams was 
used to obtain the equation of motion. They developed a 
finite element method approach coupled with a direct 
integration algorithm to solve the obtained equation. 
Similar to the aforementioned works, the solution obtained 
is very complicated.  

Similarly, Songsuwan et al. [23] investigated the 
vibration of functionally graded sandwich beams of an 
elastic foundation subjected to a moving load. They used 
Timoshenko’s beam theory and Lagrange’s equations to 
derive the beam equation of motion. They applied Ritz and 
Newmark methods to solve the obtained equation of 
motion.  

Furthermore, Sarparast and Ebrahimi-Mamaghani 
[24] studied the forced and free vibrations of a laminated 
curved beam subjected to moving loads. They investigated 
the effect of different stacking sequences and load speeds 
on the vibration of such beams. They used a numerical 
method for solving the governing equation.  

However, Zhang et al. [25] introduced a 
comparison between the Timoshenko beam theory and the 
Euler-Bernoulli beam theory to find out which was best at 
describing the vibration of the beam under the moving 
load effect. FEM was introduced as the reference for these 
two theories. The authors claimed that the Timoshenko 
beam is much better than the Euler-Bernoulli beam in 
determining the dynamic response of beams at higher 
frequencies but that it makes no difference at low 
frequencies. Also, they found that the Timoshenko beam 
model is very accurate in describing beam deflection. 
They stated that a quasi-static model gives satisfactory 
results for moderate load speeds.  

Additionally, Ebrahimi-Mamaghanin et al. [26] 
investigated the vibrations of axially functionally graded 
beams under the effect of moving loads. They introduced a 
mathematical model that addresses the effect of several 
important factors that considerably affect beam vibration: 
axial material gradation and rotary inertia factors on the 
critical speed, vibration magnification factors, mechanisms 
of cancellation, and maximum free vibration of the 
system. The mathematical model was solved using the 
fourth-order Runge-Kutta method. The authors verified 
their results by comparing them with the available results 
in the literature, and a good agreement was observed.  

Also, Jahangiri et al. [27] introduced a new 
approach for addressing the nonlinear behaviour of a beam 
subjected to a moving load. The energy method was used 

to obtain the beam equations, which describe the vibration 
of the beam under a moving load in large oscillations. 
Galerkin and perturbation methods were used to solve the 
proposed equation.  

Additionally, Zheng et al. [28] suggested that the 
bridge influence line can reflect the structural behaviour of 
the bridge under moving loads. They proposed the 
dynamic fluctuation part elimination method based on 
empirical mode decomposition to identify the bridge static 
influence line. They used a simply supported beam 
subjected to a moving load to validate their model, and 
they used three loads of different speeds. Also, the 
proposed solution is a very long-term solution and difficult 
to achieve.  

Alternatively, Camara [29] presented an 
algorithm called MS5 embedded in the Python library 
MDyn. M55 uses an efficient indexing strategy to 
deactivate specific structural nodes and movements. This 
is done by a novel modal truncation based on a new 
dynamic participation factor and the vectorization of the 
Modal Superposition (MS) algorithm. For a range of load 
speeds, the results of MS5 were compared with the results 
of the conventional MS obtained from ABAQUS software. 
These results of MS5 were almost identical to those 
obtained from ABAQUS, but it is on average nine times 
faster. They stated that time and effort are very important 
to achieve a good beam design. 

However, Assie et al. [30] investigated the 
dynamic response of a thick, perforated beam. They used 
different beams with different numbers and dimensions of 
square holes. They derived their equation of motion based 
on Timoshenko theory and the Lagrange procedure. Then, 
they solved their equation using the Ritz method with the 
Newmark average acceleration method. They presented 
the effect of moving load speed and magnitude on the 
dynamic response. Also, they addressed the influence of 
the holes’ number and dimensions on the beam vibration.  

Similarly, Akbaş et al. [31] used the Timoshenko 
beam theory to study the dynamic response of a composite 
beam subjected to a moving load. They obtained the beam 
equation of motion based on the Lagrange method. The 
equation was solved using the Ritz method in addition to 
the Newmark average acceleration method. They 
investigated the effects of fibre orientation, volume 
fraction, and the speed of the load. They concluded that 
the fibre orientation and the volume fraction have a 
significant effect on the beam response, but the major 
effect is coming from the speed of the load, which not 
only affects the beam response but also governs the 
required fibre orientation and the volume fraction. 

On the other hand, Zhang et al. [32] proposed a 
structure containing multiple beams that were connected 
via elastic elements. The dynamic response of the structure 
under the effect of the moving load was investigated. To 
solve the derived equation of motion, the Fourier series in 
addition to three special transformations were proposed. 
They used their solution to study the influences of the 
beam material properties and load speed on the response 
of the structure. 
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It can be concluded from all the above-mentioned 
works that there is no simple equation that can be used to 
calculate the vibration of a beam under the effect of a 
moving load. In addition, the available software for 
modelling such a case requires sufficient experience and 
consumes time. Therefore, it was my goal in this paper to 
develop an approach that can easily be used to describe the 
vibration of the beam under the effect of a moving load. 
This approach is based on deriving an equivalent lumped 
parameter model for the beam and the moving load. This 
developed model is characterized by simplicity in handling 
and confidence in results.  
 
3. METHOD 

This section contains the proposed mathematical 
model and the equivalent lumped parameter system of the 
beam under the effect of a moving load. 
 
3.1 Mathematical Modelling 

Figure-1 shows a simply supported beam 
subjected to the load 𝑃, which has the position 𝑥 from the 
left-hand side of the beam 

 
 

Figure-1. Simply supported beam subjected to  
moving load. 

 
From writing down the moment equation about 

the right-hand side of the beam shown in Figure-1, the 
following expression can be obtained: 
 𝑅 = (𝑙−𝑥𝑙 ) 𝑃        (1) 

 
Where 𝑙 is the length of the beam and 𝑅 is the 

vertical reaction of the left-hand support of the beam. 
Therefore, the moment in the section m-m can be 
expressed as 
 

𝑀|𝑚−𝑚 = {𝑃2 𝑥                            0 ≤ 𝑥 ≤ 𝑙 2⁄
𝑃2 (𝑙 − 𝑥)                  𝑙 2⁄ ≤ 𝑥 ≤ 𝑙     (2) 

 
Now, the engineering equation of beams states 

that   
 𝑀 = 𝐸𝐼 𝑑𝑦2𝑑𝑥2              (3) 

 
Substituting (2) into (3) gives   

𝐸𝐼 𝑑𝑦𝑙2𝑑𝑥2 = 𝑃2 𝑥                     0 ≤ 𝑥 ≤ 𝑙 2⁄      (4) 

 
and 
 𝐸𝐼 𝑑𝑦𝑟2𝑑𝑥2 = 𝑃2 (𝑙 − 𝑥)         𝑙 2⁄ ≤ 𝑥 ≤ 𝑙     (5) 

 
where 𝑦𝑙 and 𝑦𝑟 are the deflection at the left- and right-
hand side of the mid-span, respectively. Integrating (4) 
twice gives 
 𝑑𝑦𝑙𝑑𝑥 = 1𝐸𝐼 (𝑃4 𝑥2 + 𝐶1)       (6) 

 
and 𝑦𝑙 = 1𝐸𝐼 ( 𝑃12 𝑥3 + 𝐶1𝑥 + 𝐶2)      (7) 

 
Also, integrating (5) twice gives  

 𝑑𝑦𝑟𝑑𝑥 = 1𝐸𝐼 [𝑃2 (𝑙𝑥 − 𝑥22 ) + 𝐶3]                   (8) 

 
and 
 𝑦𝑟 = 1𝐸𝐼 [𝑃2 (𝑙 𝑥22 − 𝑥36 ) + 𝐶3𝑥 + 𝐶4]                   (9) 

 
Where 𝐶1 , 𝐶2, 𝐶3, and 𝐶4 are constants that can 

be calculated using the proper boundary conditions. For 
completing the solution and finding the closed-form 
solution, the following boundary conditions are applied: at 𝑥 = 0 then 𝑦 = 0, at 𝑥 = 𝑙2 then 

𝑑𝑦𝑙𝑑𝑥 = 𝑑𝑦𝑟𝑑𝑥  and 𝑦𝑙 = 𝑦𝑟  and 

finally at 𝑥 = 𝑙 then 𝑦 = 0. These give that the constants 
are: 𝐶1 = − 𝑃𝑙2 16⁄ , 𝐶2 = 0, 𝐶3 = − 9𝑃𝑙2 48⁄  and 𝐶4 = 𝑃𝑙3 48⁄ . Thus, the deflection of the beam can be 
written as 
 y = P48EI {(4x3 − 3l2x)                                    0 ≤ x ≤ l 2⁄(12lx2 − 4x3 − 9l2x + l3)          l 2⁄ ≤ x ≤ l        (10) 

 
Investigating (10) for the entire length of the 

beam shows that the deflection of the mid-span fits exactly 
with the first mode shape of vibration of the simply 
supported beam, thus the deflection is found to be 
expressed as  
 𝑦 = 𝑦𝑠 𝑠𝑖𝑛 (𝜋𝑥𝑙 )                                 (11) 

 
where 𝑦𝑠 is the maximum deflection of the beam at the 
mid-span, which can be expressed as  
 𝑦𝑠 = 𝑃𝑙348𝐸𝐼                                 (12) 

 
Substituting (12) into (11) gives 

  𝑦 = ( 𝑃𝑙348𝐸𝐼) 𝑠𝑖𝑛 (𝜋𝑥𝑙 )                                (13) 
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Now, if it is considered that the load is moving at 

a constant speed, 𝑣, then the position 𝑥 of the force 𝑃 can 
be expressed as 
 𝑥 = 𝑣. 𝑡                                  (14) 
 

By substituting (14) into (13), the vibration of the 
beam mid-span can be expressed as  
 𝑦(𝑡) = ( 𝑃𝑙348𝐸𝐼) 𝑠𝑖𝑛 (𝜋𝑣𝑙 ) 𝑡                  (15) 

 
As will be shown later in the results section (see 

Figure-8) that (15) gives accurate results for loads of 
speeds that are less than 20% of the critical speed of the 
beam. 
 
3.2 Lumped-Parameter Model 

To obtain a full understanding of the behaviour of 
the beam under the effects of moving loads, even those of 
high velocities, the lumped parameter model shown in 
Figure-2 is proposed. 
 

 
 

Figure-2. Equivalent lumped parameter system  
of the beam. 

 
For the system shown in Figure-2, the 

relationship between the applied force and the mass 
displacement y can be expressed as  
 𝐹(𝑡) = 𝐾 𝑦(𝑡)                                              (16) 
 
where 𝐾 is the equivalent stiffness of the beam. For a 
simply supported beam, the stiffness can be written as  
 𝐾 = 48𝐸𝐼𝑙3                                   (17) 

 
As shown in Figure-3, the force 𝐹(𝑡) is only 

applied for a certain time depending on its speed and the 
beam length. Therefore, it is required to define a new 
variable to complete its definition. This variable is the 
passing time 𝑡𝑝, which is defined as the time required for 
the force to pass the beam and can be expressed as 
 𝑡𝑝 = 𝑙𝑣                                  (18) 

 
Substituting (17) and (15) into (16) leads to the applied 
force, which can be formulated as  
 𝐹(𝑡) = 𝑃 𝑠𝑖𝑛 𝜔𝑡 ,          𝑡 ≤ 𝑡𝑝                 (19) 
 
where 𝜔 is effective frequency of the moving load, which 
is found to be expressed as  
 𝜔 = 𝜋𝑣𝑙                                                (20) 

 

 
 

Figure-3. The force effect of the moving load on the mid-
span of the beam. 

 
The fundamental natural frequency of a simply 

supported beam, 𝜔𝑛, can be written as  
 𝜔𝑛 = (𝜋𝑙 )2 √𝐸𝐼𝜌𝐴                                 (21) 

 
where 𝐴 and 𝜌 are the cross-sectional areas and the density 
of the beam, respectively. Generally, the natural frequency 
can be expressed as 
 𝜔𝑛 = √𝐾𝑀                                 (22) 

 
Substituting (17) and (21) into (22) and then, 

after some mathematical simplifications, finding the 
equivalent mass of the beam to be  
 𝑀 = (48𝜋4) 𝜌𝐴𝑙                                 (23) 

 
The critical speed of the moving load, 𝑣𝑐, can be 

found by equalizing the equation of the excitation 
frequency (20) to that of the natural frequency (21). This 
gives  
 𝑣𝑐 = 𝜋𝑙 √𝐸𝐼𝜌𝐴                                 (24) 

 
To give a general equivalent system for the 

vibrating beam, the damping is considered by the 
coefficient 𝐶. Thus, the general equation can be expressed 
as  
 𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑦(𝑡) = 𝐹(𝑡)                 (25) 
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The transfer function of the system can be written 
as 
 𝑌(𝑠)𝐹(𝑠) = 1𝑀𝑠2+𝐶𝑠+𝐾                                 (26) 

 
Unfortunately, it is difficult to obtain one 

analytical solution for (25). This is because the moving 
load 𝐹(𝑡) changes its effect depending on its speed, 𝑣, as 
shown in Figure-4. Generally, the force 𝐹(𝑡) affects a 
sinusoidal wave at low speeds, but it acts more like a pulse 
at high speeds. Therefore, it can be said that the force 
effect is highly related to its speed, and this is the reason 
why (15) is valid only for load speeds that are less than 
20% of the critical speed. Where force can be considered a 
sinusoidal effect. As will be shown next, a Simulink model 
is introduced to solve the proposed lumped-parameter 
model easily and with good accuracy.  
 
 
 
 
 
 
 
 

 
 

Figure-4. Effect of the moving load at the mid-span of the 
beam (load magnitude is 500 N). 

 
4. RESULTS 

A standard rectangular steel bar of 1 in x 1/2 in 
(25.4 mm x 12.7 mm) cross-sectional area with 800 mm 
length was chosen to be used for investigating the validity 
of the proposed model. The bar has the standard structural 
steel properties, with a modulus of elasticity equal to 200 
GN/m2 and a density of about 7800 kg/m3. The bar was 
simulated as a simply supported beam using Ansys 
R19.0/Workbench, as shown in Figure-5a.  

In Ansys R19.0/Workbench, a package called 
“Transient Structural Analysis” was used. In such an 
analysis, the moving force should be carefully defined as a 
function of time and location through tabular data. This 
requires defining different locations on the beam surface. 
The number of these locations is determined depending on 
the designer’s experience in getting the best results. It was 
found that ten locations are fair enough to define the 
moving force accurately, as shown in Figure-5(a). At each 
one of these locations, a force was applied based on the 
pattern shown in Figure-5(b), where it can be noted that 
the passing time 𝑡𝑝 was used to set the load speed.  
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(a) Applied forces and their locations 

 

 
(b) The concept of defining the moving load as a function of time 

 

Figure-5. Moving load representation with Ansys R19.0. 
 
As can be seen in Figure-6, a displacement probe was inserted at the mid-span of the beam to exactly measure the vibration 

at this location. 
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Figure-6. Displacement probe results of a beam subjected to moving load using workbench/transient structural 
analysis from Ansys R19.0. 

 
Figure-7 shows the proposed Simulink model. It 

can be noted how easy it is to assemble such a model and 
investigate the vibration of the beam at different loading 
conditions.  

 

 
 

Figure-7. Simulink representation of a beam under moving load. 
 

Figure-8 shows the results obtained from the 
derived analytical solution (equation 15) and the FEM 
model (Ansys R19.0) at different load speeds. To see the 
effect of the load movement clearly, the values of the 
vibration amplitude, 𝑦, were divided by the value of 𝑦𝑠, 

which is the maximum deflection caused by a static load 
of the same magnitude as the moving load. The value of 𝑦𝑠 
was calculated and found to be 6.17 mm. Also, the time, 𝑡, 
was divided by the corresponding passing time, 𝑡𝑝, of each 
speed.  
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(a) 𝑣 = 1 𝑚 𝑠⁄    &  𝑡𝑝 = 800 𝑚𝑠 

 

 
(b) 𝑣 = 5 𝑚 𝑠⁄    &  𝑡𝑝 = 160 𝑚𝑠 

 

 
c) 𝑣 = 10 𝑚 𝑠⁄    &  𝑡𝑝 = 80 𝑚𝑠 

 

 
(d) 𝑣 = 20 𝑚 𝑠⁄    &  𝑡𝑝 = 40 𝑚𝑠 

 

Figure-8. FEM and equation (15) results for 500 N force 
moves with different speeds. 

 
Figure-9 shows a comparison between the results 

obtained from the FEM model and those obtained from the 
proposed Simulink model. 

 (𝑎) 𝑣 = 1 𝑚 𝑠⁄    &  𝑡𝑝 = 800 𝑚𝑠 
 

 
(b) 𝑣 = 5 𝑚 𝑠⁄    &  𝑡𝑝 = 160 𝑚𝑠 

 

 
(c) 𝑣 = 10 𝑚 𝑠⁄    &  𝑡𝑝 = 80 𝑚𝑠 

 

 
(d) 𝑣 = 20 𝑚 𝑠⁄    &  𝑡𝑝 = 40 𝑚𝑠 

 

 
(e) 𝑣 = 30 𝑚 𝑠⁄    &  𝑡𝑝 = 26.6 𝑚𝑠 
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(f) 𝑣 = 40 𝑚 𝑠⁄    &  𝑡𝑝 = 20 𝑚𝑠 

 

 
(g) 𝑣 = 50 𝑚 𝑠⁄    &  𝑡𝑝 = 16 𝑚𝑠 

 

 
(h) 𝑣 = 60 𝑚 𝑠⁄    &  𝑡𝑝 = 13.3 𝑚𝑠 

 

 
(i) 𝑣 = 70 𝑚 𝑠⁄    &  𝑡𝑝 = 11.4 𝑚𝑠 

 

 
(j) 𝑣 = 80 𝑚 𝑠⁄    &  𝑡𝑝 = 10 𝑚𝑠 

 

 
(k) 𝑣 = 90 𝑚 𝑠⁄    &  𝑡𝑝 = 8.9 𝑚𝑠 

 

 
(l) 𝑣 = 100 𝑚 𝑠⁄    &  𝑡𝑝 = 8 𝑚𝑠 

 

Figure-9. FEM and Simulink results for 500 N force 
moves with different speeds. 

 
Figure-10 shows the maximum vibration 

amplitude of the beam with the corresponding speed of the 
load. In this figure, the load speed, 𝑣, was divided by the 
critical speed of the beam, 𝑣𝑐, which was calculated and 
found to be 72.67 m/s. 
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Figure-10. Maximum vibration amplitude of the beam at different load speeds. 
 
5. DISCUSSIONS 

In general, it can be concluded that using 
Transient Structural Analysis (Ansys) requires experience 
in defining the beam geometry and boundary conditions. 
Furthermore, the moving load needs to be set up carefully 
to achieve the required speed and magnitude. In addition, 
if it is required to investigate another beam of different 
geometry or different loading conditions, then a new 
model should be implemented. This can cause extra effort 
and time waste. Also, the Transient Structural Analysis 
does not offer any information about the steady-state 
response of the beam. Instead, the proposed Simulink 
model can be assembled and used without the need for any 
special knowledge of software handling, where the beam 
parameters and the load specifications can easily be 
adjusted.  

It can be seen from Figure-8 that the results of the 
derived formula (equation 15) are very close to the results 
obtained from Ansys R19.0 for the load speeds of 1 m/s, 5 
m/s, and 10 m/s. Therefore, it can be concluded that the 
derived formula can be used only for the low and 
intermediate load speeds, which are 20% of the critical 
speed.  

Generally, there is a very good agreement 
between most of the results obtained from the FEM 
(Ansys R19.0) model and the proposed Simulink model, 
as shown in Figure 9. It was found that the differences do 
not exceed 1.5%. It is worth saying that the Simulink 
results were obtained much easier and faster than the 
results from Ansys R19.0. 

Furthermore, Figure-10 shows that the maximum 
amplitude due to a moving load is about 1.64 times the 
deflection caused by a static load of the same magnitude, 
and this maximum vibration occurs when the load speed is 
about 0.58 times the critical speed of the beam. 
 
6. CONCLUSIONS 

This paper introduces an equivalent lumped parameter 
model to describe the beam vibration caused by a moving 
load. Furthermore, the paper proposes a simple analytical 
formula and Simulink model to calculate the vibration of 

such beams under any loading conditions. In general, the 
following points were withdrawn from the current work: 
 
a) The derived formulae (equation 15) give accurate 

results for loads with speeds less than 20% of the 
critical speed of the beam. 

b) Using the proposed Simulink model gives very good 
results in comparison with the results obtained from 
the FEM model (Ansys R19.0). However, the 
proposed Simulink model is easy to implement and 
can be used for designing any beam under any loading 
conditions. 

c) The maximum vibration amplitude caused by a 
moving load in a simply supported beam can reach 
1.64 times the deflection caused by a static load of the 
same magnitude. 

d) Maximum vibration occurs when the load speed is 
about 0.58 of the critical speed of the beam. 
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