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ABSTRACT 

Electroencephalogram (EEG) signals are nonstationary and vary across time. The static learning model requires 

large training data to ensure sufficient knowledge acquisition to build a robust model. However, it is very challenging to 

achieve complete concept learning due to the behavioural changes in model learning. This issue is particularly critical in 

brainprint identification, where data acquisition in a short time cannot ensure sufficient training data for comprehensive 

model learning. Thus, dynamic learning, i.e., incremental learning and ensemble learning, presents a better solution for 

encapsulating EEG signal changes and variations. Both incremental and ensemble learning follow different approaches to 

manag the concept learning. Incremental learning merges new variations of EEG signals into the existing learning model 

over time, while ensemble learning uses multiple models for prediction. Nevertheless, limited research works were 

reported on comparing these two learning methods to prove the efficiency in handling nonstationary data for brainprint 

identification. Thus, this paper aims to compare incremental learning and ensemble learning for brainprint identification 

modelling. Incremental Fuzzy-Rough nearest Neighbour (IncFRNN) and Random Forest are selected to represent 

incremental learning and ensemble learning, respectively. Accuracy, area under the ROC curve (AUC) and F-measure 

were used to evaluate the classification performance. The experimental results proved that incremental learning 

outperformed ensemble learning when the training data were limited. The classification results of IncFRNN model were 

recorded at 0.9160, 0.9827 and 0.9169 while the Random Forest model only yielded 0.8113, 0.9709, and 0.9169 in 

accuracy, AUC, and F-measure, respectively. The ongoing learning process in incremental learning helps to capture the 

new changes in EEG signals and improve the classification performance. 
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1. INTRODUCTION 

With the advancement of non-invasive Brain-

Computer Interface (BCI), Electroencephalogram (EEG) 

signals have grown into a popular topic in a variety of 

fields of study due to their high time resolution, low cost 

and portability [1]. EEG signals are being used as a 

biometric trait for authentication and identification and 

have been highlighted recently. Brainprint identification 

uses EEG signals to identify an individual among a group 

of persons who are being evaluated (one-to-N matching). 

In recent years, brainprint identification is catching 

researchers’ attention [2]-[6] corresponding to the rise of 

security. EEG signal is private and provides uniqueness. 

Everyone has diverse mental reactions towards different 

stimuli. EEG signal is outstanding because it is covered in 

the brain and physically invisible. Other biometric traits, 

for example, fingerprint, palm print, or face, are 

effortlessly reachable by physical sensors on the body 

surface [7]. These are simply violated and inclined to be 

imitations by third parties. For example, an artificial 

fingerprint can be made from silicone, gel, or rubber. 

However, the EEG signal is difficult to replicate at 

different locations and at different times. 

The main challenges in EEG signals classification 

are the low signal-to-noise ratio (SNR), and nonstationary 

characteristics within or between persons, where the EEG 

signals of the same person vary across time. 

Correspondingly, our brain is easily affected by emotions, 

moods, feelings, and other surrounding environmental 

factors [8]. As a result, a classifier might be trained on a 

limited amount of training data [9]. Generally speaking, a 

static learning model requires a large or full amount of 

training data to ensure sufficient knowledge acquisition to 

build a robust learning model. Static or traditional 

approaches will become useless for learning new 

information. The issue will grow difficult if the previously 

seen data is no longer available when the new data arrives. 

It is due to the static or traditional approach required to 

combine the old and new data to retrain the classifier, 

which is very impractical. In brainprint identification 

modelling, it is very challenging to achieve complete 

concept learning due to emotional and behavioural 

changes in the model learning. This issue is particularly 

critical in the case of brainprint identification, where data 

acquisition in a short time cannot ensure sufficient training 

data for comprehensive model learning [9]. To address the 

above-mentioned issues, dynamic learning, i.e., 

incremental learning, and ensemble learning, presents a 

better solution in encapsulating the changes and variations 

in EEG signals. However, limited research works were 
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reported on the comparison between these two learning 

methods to prove the efficiency in handling nonstationary 

data for brainprint identification modelling. It is important 

to identify the right learning approach that can perform 

well despite the limited training data. 

Both incremental and ensemble learning follow 

different approaches to manage the concept learning. 

Incremental learning trains the model wisely to conquer 

the drawbacks of static learning. Incremental learning is an 

effective dynamic data mining technology that can gain 

information from the current data more quickly based on 

prior knowledge from previous data. It tends to modify the 

existing concept when the variation of knowledge is 

presented [10], [11]. From the perspective of brainprint 

identification modelling, new variations of EEG signals 

were captured in the identification system by incremental 

learning, which then evolved to what had been learnt from 

the new examples [12]. In contrast, ensemble learning 

aims to form a variety of sub-concepts hoping that these 

sub-concepts can generalize knowledge variation as a 

whole [13]. On the other hand, ensemble learning utilizes 

multiple learning algorithms to retrieve additional 

information from the existing data to improve the 

prediction [14]. Dynamic ensemble learning divides the 

data into small data pieces. After that, the classifiers train 

on each piece of the data independently. Eventually, it 

generates heuristic rules for combining various classifiers 

into a single super classifier. As a result, the dynamic 

ensemble learning model can handle a growing amount of 

data. Both incremental and ensemble learning offer 

interesting solutions for brainprint identification.  

Incremental Fuzzy-Rough Nearest Neighbour 

(IncFRNN), K-Nearest Neighbour (KNN), and 

Incremental Support Vector Machine (SVM) are examples 

of incremental learning while the Random Forest is an 

example of ensemble learning. IncFRNN utilizes a 

heuristic update method to gradually reshape and reform 

the personalized knowledge granules. It captures the new 

changes and variations by inserting unseen and 

representative data. It has been used in [12], [15] for 

brainprint authentication, and achieved good classification 

results. The accuracy and AUC for the brainprint 

authentication were 95.08% and 0.8843, respectively [12]. 

The classification results are much better than incremental 

KNN. It might be due to the imbalanced dataset and the 

First-In-First-Out (FIFO) update strategy in the KNN 

algorithm. Incremental SVM is slightly more complex 

than the KNN. The classifier’s training time in large 

datasets is affected by the parameter selection and the 

algorithmic complexity. Incremental SVM was used to 

classify the discrimination of movement imagery EEG 

signals in Brain-Computer Interface (BCI) to cope with 

EEG dynamic variations [16]. It also implemented the 

FIFO update strategy to remove certain historical 

examples consecutively and replenish certain recently 

acquired new objects. This experiment achieved 80% in 

terms of the classification rate.  

On the other hand, Random Forest includes and 

utilizes many or all the features to develop multiple 

decision trees. Thus, it will help to limit the errors due to 

bias and variance. Random Forest was used to identify the 

EEG data from a group of 40 participants for the human 

mental state [17]. The classification accuracy achieved 

75%. Besides that, Random Forest and SVM have been 

used for brainprint identification in eyes-open and eyes-

closed conditions [18]. The experiment proved that the 

Random Forest performed better than SVM. The 

identification rates in the eyes open condition were 

recorded at 98.16% for Random Forest and 97.64% for 

SVM. For the eyes closed condition, the identification 

rates were recorded at 97.30% and 96.02% for Random 

Forest and SVM, respectively. 

This paper presents a few sections as follows: 

Section 2 illustrates the experimental materials and 

methods, including data acquisition, data pre-processing, 

feature extraction, and feature selection. Meanwhile, 

Section 3 describes the machine learning approach, such 

as incremental learning and ensemble learning. Besides, 

Section 4 depicts the experimental results and validation 

tests with discussion. Section 5 concludes the overall 

works in the conclusion term and hints at the future work 

direction. 

 

2. MATERIALS AND METHODS 
In this study, the brainprint identification 

modelling comprises four main steps (as shown in Figure-

1). The experimentation starts with the data acquisition, 

then followed by the data pre-processing step. It is an 

essential step to avoid misleading the acquired data. Next, 

the feature extraction stage is required to retrieve the 

unique characteristics and meaningful data from the EEG 

signals to represent an individual. Without meaningful 

data, a machine learning model will be impractical. 

Besides that, feature selection is also required to minimize 

the dimension of feature vectors before fitting into the 

classifiers. The classification labels are according to the 

number of subjects.  
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Figure-1. Process of the experiment. 

 

2.1 Data Acquisition 

A new EEG dataset is gathered from 10 healthy 

participants (7 males and 3 females), ranging from 26 to 

32 years old. The data acquisition was carried out at 

Universiti Teknikal Malaysia Melaka (UTeM) in a 

controlled quiet research laboratory to maintain the 

participant's focus and reduce the signal noise. The 

experimental design and ethics were endorsed by the 

Medical Research and Ethics Committee (MREC) from 

the Ministry of Health Malaysia. Before their involvement, 

the participants were granted an informed consent form 

before starting the experiment. All the participants are 

right-handed and had normal vision or rectified normal 

vision.   

Each participant is compulsory to understand and 

follow the experimental procedures stated in the 

participant information sheets. The participant is sitting on 

a reclining armrest chair to provide a comfortable 

condition during EEG signal recording. It is to avoid any 

possible artefacts during the recording process, as the 

artefacts might cause the data to be misinterpreted.  

Each participant is required to recognize the 

selected password image and click on the mouse as soon 

as the password image is displayed. For each session, a 

total of 150 trials were recorded, including 60 trials of the 

selected password image, and 90 trials with a random 

image from 260 black and white images prohibited the 

password image. Next, the 150 trials were shown 

arbitrarily to the participant. The visual stimuli are 

presented in the computer screen centre with a white 

background and a resolution of 700 x 525 pixels. The 

image will be shown for 1 second only, followed by 1.5 

seconds for Inter-Stimulus Interval (ISI). The experimental 

paradigm is interpreted in Figure-2.  

 

 
 

Figure-2. EEG data acquisition experiment paradigm. 

 

The EEG signal acquisition is done by a non-

invasive method using Twente Medical Systems 

International (TMSi) porti system (as shown in Figure-3). 

It is a multifunctional 32-channel stationary and 

ambulatory system equipped with both unipolar and 

bipolar electrophysical inputs designed for physiological 

research. TMSi porti system comes with water-based 

electrodes and is convenient to use. The shielded cables 

for EEG electrodes and ground electrodes were used to 

achieve low impedance (< 1 kΩ) [19]. 

 

 
 

Figure-3. TMSi porti system. 

 

The most commonly used system for research 

purposes is the International 10-20 electrodes positioning, 

which comprises 21 electrodes (as shown in Figure-4). All 

the electrodes in the experiment were referred to the right 

earlobe (A2) and grounded on the participant’s right hand. 

The sample rate was set to 512 Hz. To reduce the 

modelling complexity, only five electrodes (O1, OZ, O2, 

T5, and T6) were chosen and used in this experiment. 

They are selected based on their importance in visual and 

audio tasks [20]. The occipital and the temporal electrodes 

 

Data acquisition 

Data pre-processing 

(Filtration, Segmentation & Artefact Rejection) 

 

Classification (Incremental learning & Ensemble 

learning) 

Feature extraction 

(PSD, Coherence & WPS) 

& Feature selection (CFS) 
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are the dominant electrodes for visual and auditory 

respectively. 

 

 
 

Figure-4. International 10-20 electrode placements. 

 

2.2 Data Preprocessing and Data Preparation 

Filtering, segmentation, and artefact rejection are 

the three important processes in stimulus-locked EEG 

data. A bandpass filter, Finite-duration Impulse Response 

(FIR) is used to filter the acquired EEG signals with the 

cut-off frequencies of 8-12 Hz to obtain alpha band 

signals. Furthermore, artefact rejection is used to abolish 

the EEG signals responses caused by excessive body 

motions or other artefacts with an amplitude of more than 

100 μV.  
 

2.3 Feature Extraction and Feature Selection 

Feature extraction is a necessary procedure to 

extract the representative characteristics from EEG signals 

in achieving robust classification results. Power Spectral 

Density (PSD), coherence and Wavelet Phase Stability 

(WPS) were used in this study. PSD is defined as the 

distribution of signal strength in the frequency domain [6]. 

It retrieves the correlation information between the 

measured signals from several electrode channels [21]. 

The PSD is calculated as follows: 

 𝑃𝑥(𝑘) = 1𝑁 |∑ 𝑥(𝑛)𝑒−𝑗(2𝜋𝑁 )𝑛𝑘𝑁−1𝑛=0 |2
                                   (1) 

 

where, 𝑘 = 0, 1, 2, … , 𝑁 − 1. 

Besides that, WPS is also good at extracting 

meaningful information from EEG signals. It uses 

wavelet-based measures to compute the phase information. 

In signal processing, the phase implies more meaningful 

information than the amplitude [22]. The formula of WPS 

is defined as follows: 

 Γ𝑠,𝜏𝑚 (ℱ) = 1𝑚 |∑ 𝑒𝑙𝑎𝑟𝑔((𝒲𝜓𝑓𝑚)(𝑠,𝜏))𝑚𝑛=1 |                             (2) 

 

where, 𝑚 = 1, … , 𝑀 and Γ𝑠,𝜏𝑚 (ℱ) measures the mean of the 

degree of clustering of the angular distribution for certain 𝑠 and 𝜏 for 𝑀 trials. 

Furthermore, coherence is also widely applied in 

brainprint identification model. It utilizes the degree of 

linear correlation between two signals [23]. The coherence 

in the EEG signals provides an important estimation of 

functional interactions between the neural systems 

operating in each frequency band [24]. The value of 

coherence is ranging from 0 to 1. The higher the value of 

the coherence, the higher the linear dependence between 

the two signals. The expression of coherence is given as 

follows: 

 𝐶𝑥𝑦(𝑓) =  |𝑃𝑥𝑦(𝑓)|2𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)                                                      (3) 

 

After extracting the features, the Correlation-

based Feature Selection (CFS) method is used to reduce 

the size of feature vectors without degrading the 

classification performance [25]. CFS could be a basic and 

correlated-based filter algorithm that applies to discrete 

and continuous problems [25]. The CFS algorithm 

assesses the feature subset based on the correlation-based 

heuristic merit. It determines the feature’s effectiveness 

through the inter-correlation between the features. The 

equation used to filter out the redundant, irrelevant, and 

noisy features is expressed as follows: 

 𝐹𝑠 = 𝑘𝑟𝑧𝑛̅̅ ̅̅ ̅√𝑘+𝑘(𝑘−1)𝑟𝑛𝑛̅̅ ̅̅ ̅                                                             (4) 

 

where 𝐹𝑠 is the evaluation of a subset of 𝑆 consisting of 𝑘 

features, 𝑟𝑧𝑛̅̅ ̅̅  is the average correlation value between 

features and class labels, and 𝑟𝑛𝑛̅̅ ̅̅  is the average correlation 

value between two features. 

 

2.4 Performance Measures and Validation Test 

In this study, accuracy, area under Receiver 

Operating Characteristics (ROC) curve (AUC), and f-

measure are used to evaluate the classification efficiency 

for the brainprint identification modelling. Accuracy is the 

calculation used to decide which model is the most 

excellent at recognizing relationships and trends between 

variables in the training dataset. The better a model can 

generalize to testing data, the better predictions and 

insights it can produce. The accuracy is calculated as 

follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁                                              (5) 

 

where TP is a true positive, TN is a true negative, FP is a 

false positive and FN is false negatives. 

AUC is also frequently used in evaluating 

classification performance. It captures a single point on the 

reception operating characteristic curve. The higher the 

value of AUC, the better the classification performance. 

The AUC is calculated by simple trapezoidal integration: 

 𝐴UC = ∑ PDET(τn)∆PFA(τn) + 12 ∆PDET(τn) ∗ ∆PFA(τn)n        (6) 
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where, ∆𝑃𝐷𝐸𝑇(𝜏𝑛) = −(𝑃𝐷𝐸𝑇(𝜏𝑛) − 𝑃𝐷𝐸𝑇(𝜏𝑛−1)) and ∆𝑃𝐹𝐴(𝜏𝑛) = (𝑃𝐹𝐴(𝜏𝑛) − 𝑃𝐹𝐴(𝜏𝑛−1)). 

In addition, f-measure is the combination of 

precision and recall and is approximately the average of 

both the measures when there are close. It is also defined 

as the weighted harmonic mean. The f-measure is 

calculated as: 

 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙                                  (7) 

 

where,  𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄ . 

Before performing the validation test, an 

Anderson-Darling test was performed in MATLAB to 

check the normality distribution of the results. The 

Anderson-Darling test computes the key values for a 

specific distribution. It appears to be more viable in 

finding variations in the distribution tail. The distribution 

tail is very crucial, especially in the analysis of capability. 

Next, paired sample t-test, was used to test the significant 

difference in the comparison of approaches. 

 

3. MACHINE LEARNING APPROACH 

Incremental learning and ensemble learning are 

two basic ways of learning from dynamic data or big 

stream data. Incremental learning fits a machine learning 

model where the learning process occurs as the new 

examples appear, and after that evolves to what has been 

learned from the unused cases. The goal of incremental 

learning is for the learning model to adapt to new data 

without neglecting its existing knowledge.  In contrast, 

ensemble learning utilizes numerous base learners and 

merges their predictions. The fundamental concept of 

dynamic ensemble learning is splitting large data into 

small data pieces and training the classifiers independently 

on each piece of data. The key difference between 

incremental learning and ensemble learning is that 

ensemble learning may dispose of outdated training data, 

whereas incremental learning may not [14]. In this section, 

Incremental Fuzzy-Rough Nearest Neighbour (IncFRNN) 

is used for incremental learning, and Random Forest is 

used for ensemble learning. 

 

3.1 Incremental Learning 

Incremental Fuzzy-Rough Nearest Neighbour 

(IncFRNN) is one of the incremental learning methods. 

IncFRNN was introduced by Liew et al. [12], [15], by 

employing a heuristic update method to revise the 

personalized knowledge granules incrementally. The 

heuristic update method implements the variation of an 

object, the addition of an object and the deletion of an 

object for the incremental update strategy.  

In the IncFRNN algorithm, the new object is 

added selectively to the training pool when the learning 

model meets with test objects. The insertion of an object 

occurs when the test object is inaccurately classified. The 

principle concept of this condition is that the current 

knowledge granules are unable to predict the new test 

object. Hence, this modification will help the identification 

process if the model meets with another similar test object 

in the future.   

However, continuously inserting the object would 

increase the number of training data and lead to high 

computational complexity. Thus, the IncFRNN algorithm 

updates the training pool selectively. Instead of inserting 

all the new test objects, the IncFRNN algorithm selects the 

representative test objects added to the training pool. 

Besides that, the IncFRNN algorithm limits the number of 

training objects by using the window size threshold. It is 

an optional process. The deletion of an object is executed 

when the number of training objects is larger than the 

window size threshold. In the IncFRNN algorithm, a 

frequency counter is introduced to track the usage 

frequency for every nearest neighbours. This will delete 

the training object with the lowest count. Moreover, the 

IncFRNN algorithm pursues the First-In-First-Out (FIFO) 

strategy, where the frequency counter for the training 

objects is equal. In summary, the incremental update 

strategies in the IncFRNN algorithm would keep all the 

distinct objects while abolishing the trivial objects. 

IncFRNN algorithm calculates the nearest 

neighbours by using similarity, as shown in Equation (8). 

 𝑅𝑎(𝑚, 𝑛) = 1 − |𝑎(𝑚)−𝑎(𝑛)||𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛|                                            (8) 

 

where, 𝑅𝑎(𝑚, 𝑛) is the degree to which objects 𝑚 and 𝑛 

are similar in attribute 𝑎, 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛  are the maximal 

and minimal occurring values of that attribute. 

 

3.2 Ensemble Learning 

Random Forest is one of the ensemble learning 

methods. Random Forest creates multiple decision trees 

during the training phase and outputs the average 

prediction of individual trees [17]. It is an expansion of 

bagging for decision trees. The fundamental concept of the 

bagging method is that a mixture of learning models 

would improve the overall classification results. However, 

a drawback of bagged decision trees is that the decision 

trees are built using a greedy algorithm that chooses the 

best-split point in the tree-building process at every step 

[26]. Therefore, the resulting trees eventually look very 

comparative, which diminishes the fluctuation of 

predictions from all the bags. 

The advantage of the Random Forest is that it is 

straightforward to compute the relative significance of 

each feature on the prediction. Random Forest generates 

forests with a random number of trees. The aggregation of 

many decision trees can decrease the chances of 

overfitting and therefore helps to yield useful results. The 

decision tree classifier uses information gain (refer to 

Equation (9)) and Gini index (refer to Equation (11)) to 

split the criteria [27]. Given a training set, 𝐷 ={(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)}, 𝑥𝑖 is a 𝐾-dimensional 

feature vector of the 𝑖th sample and 𝑦𝑖  is the label of 𝑥𝑖. 
The whole training set 𝐷 is used to train a decision tree. 𝐴 

is the number of classes in the initial training set while 𝑘th 

dimensional feature has 𝑀 possible values. The proportion 

of the 𝑗th class data in 𝐷 is represented by 𝑝𝑗. 𝐷𝑚 is the 
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set of samples with the 𝑚th possible value in feature 𝑘. 

Thus, the information gain and Gini Index are calculated 

as follows: 

 Gain(D, k) = Entropy(D) − ∑ |Dm|D Entropy(Dm)Mm=1    (9) 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = − ∑ 𝑝𝑗 𝑙𝑜𝑔 𝑝𝑗𝐴𝑗=1                                   (10) 

 𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥(𝐷, 𝑘) = ∑ |𝐷𝑚|𝐷 𝐺𝑖𝑛𝑖(𝐷𝑚)𝑀𝑚=1                      (11) 

 𝐺𝑖𝑛𝑖(𝐷) = − ∑ 𝑝𝑗(1 − 𝑝𝑗)𝐴𝑗=1                                       (12) 

 

4. RESULTS AND DISCUSSIONS 

This section presents and discusses the 

classification performance of incremental learning and 

ensemble learning for brainprint identification modelling. 

There are a few experimental parameters that are required 

to be set before performing the classification. Firstly, the 

value of 𝑘 is set to 5. The value of 𝑘 should be always an 

odd number to ease the classification [28]. In this study, 

the value of the window size threshold is set to 0, which 

denotes an unlimited number of training objects. The 

classification performance is assessed based on accuracy, 

area under the ROC curve (AUC), and F-measure. The 

data was split into three sets: 10% for training data and 

90% for testing data, 25% for training data and 75% for 

testing data, 50% for training data and 50% for testing 

data. The goal is to investigate the classification 

performance between incremental learning and ensemble 

learning with different amounts of training data. 

Moreover, a statistical test was performed to test the 

significant difference between incremental learning and 

ensemble learning with 95% confidence level. 

 

 
 

Figure-5. Comparison of accuracy between IncFRNN and 

Random Forest with different amounts of training data. 

 

Based on Figure-5, we can observe that the 

IncFRNN technique maintained a good classification 

accuracy from a small training dataset to a large training 

dataset. Meanwhile, Random Forest showed a huge 

difference when using a limited amount of training data. 

The classification performance has been further improved 

when more data was used for the training phase. With the 

10% of training data, the accuracy achieved by the 

IncFRNN technique was 0.9160. The accuracy was 

slightly increased to 0.9174 when the amount of training 

dataset increased to 25%. An accuracy of 0.9261 was 

yielded by the IncFRNN technique when 50% of the data 

was used for training. 

On the other hand, Random Forest gained 0.8113 

only when using 10% of training data. The accuracy 

increased by 12.25% when the amount of training data 

increased to 25%. The accuracy of Random Forest 

increased slightly to 0.9273 when using 50% of the 

training data. The experiment results show that 

incremental learning can perform well, even though with 

limited training data. 

 

 
 

Figure-6. Comparison of AUC between IncFRNN 

and Random Forest with different amounts of  

training data. 

 

Based on Figure-6, we can observe that the 

overall classification performance in terms of AUC was 

excellent, with a value of AUC of more than 0.95. The 

IncFRNN showed minor differences from small amounts 

to large amounts of training data. The IncFRNN achieved 

the AUC of 0.9827, 0.9837, and 0.9849 when using 10%, 

25%, and 50% of the training data, respectively. 

Nevertheless, the AUC of Random Forest showed a huge 

difference when the training data size increased from 10% 

to 25%. With 10% of training data, the AUC only 

recorded at 0.9709; then, it increased to 0.9897 when 

using 25% of training data. It was higher than the AUC of 

IncFRNN. In addition, the Random Forest also performed 

better than IncFRNN when using 50% of the training data. 

The AUC of Random Forest was getting higher when the 

size of the training data increased. Apart from AUC, the 

classification performance is further analyzed in F-

measure.  
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Figure-7. Comparison of F-measure between IncFRNN 

and Random Forest with different amounts of  

training data. 

 

Based on Figure-7, we can observe that the 

overall classification performance of the IncFRNN 

classifier was higher than the Random Forest classifier in 

terms of F-measure. Conceptually, F-measure is not as 

simple to understand as accuracy, but F-measure is 

typically more useful than accuracy. Inspecting the results, 

the F-measure of IncFRNN was recorded at 0.9169, 

0.9184, and 0.9268 when using 10%, 25%, and 50% of 

training data, respectively. On the other hand, the F-

measure of Random Forest gained 0.8141 when using 10% 

of the training data. The F-measure of Random Forest 

increased by 12.22%, with the value 0.9136 when using 

25% of the training data. The Random Forest showed a 

slight increment when using 50% of the training data, 

which was recorded as 0.9278. The result shows that the 

Random Forest worked well if the amount of training data 

is sufficient. However, it is troublesome to get sufficient 

training data during the initial stage of brainprint 

identification modelling. 

 

Table-1. Validation tests for the comparison between IncFRNN and random forest with different  

amount of training data. 
 

Performance 

Measure 
Classifier 10% p-value 25% p-value 50% p-value 

Accuracy 
IncFRNN 0.9160 

0.001 
0.9174 

0.271 
0.9261 

0.842 
Random Forest 0.8113 0.9107 0.9273 

AUC 
IncFRNN 0.9827 

0.014 
0.9837 

0.014 
0.9849 

0.002 
Random Forest 0.9709 0.9897 0.9917 

F-Measure 
IncFRNN 0.9169 

0.000 
0.9184 

0.525 
0.9268 

0.897 
Random Forest 0.8141 0.9136 0.9278 

 

The classification results are further analyzed 

with validation tests. Paired sample t-test was carried out 

to test the significant difference between incremental 

learning and ensemble learning with different amounts of 

training data for brainprint identification modelling. Based 

on Table-1, all the comparisons between IncFRNN and 

Random Forest showed a significant difference when 

using 10% of the training data. The p-value of the 

comparison between accuracy, AUC, and F-measure were 

0.001, 0.014, and 0.000, respectively. With 10% of 

training data, the classification performance of IncFRNN 

was significantly better than the Random Forest.  

With 25% of the training data, only the AUC 

showed a significantly different between the two learning 

models. The p-value was recorded at 0.014. Since the 

AUC of Random Forest was higher than the IncFRNN, 

thus, it can be concluded that the Random Forest 

performed better than the IncFRNN. The p-value of 

accuracy and F-measure were 0.271 and 0.525, 

respectively, which are greater than 0.05. This means that 

the classification performance of IncFRNN and Random 

Forest did not show significantly different. The 

classification performance of Random Forest improved if 

the amount of training data increased.  

The classification performance is further 

analyzed with 50% of the training data. Based on Table-1, 

the overall classification performance of the Random 

Forest was slightly better than the IncFRNN. Among the 

three evaluation metrics, only the AUC showed 

significantly different in the comparison. The p-value was 

0.002, which was less than 0.05. By comparing the AUC 

between the two learning models, it can be concluded that 

Random Forest performed better than IncFRNN. 

This experiment proved that incremental learning 

is more suitable if the amount of training data is limited. It 

is because incremental learning can include new examples 

and revise the knowledge granules according to the 

changes in EEG signals. In EEG data acquisition, it is 

difficult to get a full training dataset in the early stage. 

Thus, it is crucial to update the knowledge granules from 

time to time. On the other hand, ensemble learning utilizes 

numerous base learners and merges their predictions to 

improve predictive performance. Ensemble learning is 

unable to update knowledge granules incrementally. Thus, 

ensemble learning can only perform well if the training 

data are sufficient. 
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5. CONCLUSIONS 
In conclusion, we have studied the classification 

performance of incremental learning and ensemble 

learning with different amounts of training and testing data 

for brainprint identification modelling. The proposed 

models were tested on the EEG data of 10 participants. 

Our experimental results and validation tests revealed that 

incremental learning can often contribute to the highest 

properties of accuracy, AUC, and F-measure. These 

findings suggested that incremental learning was more 

suitable for brainprint identification modelling, especially 

with a limited amount of training data. As compared to 

ensemble learning, incremental learning was able to 

capture new examples and included them in the training 

pool for future prediction. Hence, personalized knowledge 

granules are kept updated. In other words, incremental 

learning is a good dynamic learning model with the ability 

to update the knowledge granules whenever the new data 

arrived. Future works can be done by integrating 

incremental learning and ensemble learning to improve the 

classification performance for brainprint identification 

modelling. 
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