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ABSTRACT 

Ozone is one of the major challenges for the air quality community due to its adverse impact on the environment 

and human health. This study seeks to improve the understanding of underlying mechanisms for several developed models 

for ozone prediction. We aim to establish a robust prediction model for ozone concentration up to the next four hours. 

Three years dataset including ozone (O3), nitrogen oxide (NOx), nitric oxide (NO), sulphur dioxide (SO2), nitrogen dioxide 

(NO2), carbon monoxide (CO), particulate matter (PM10, PM2.5), wind speed, solar radiation, temperature, and relative 

humidity (RH) were used in this study. The data were analyzed by using Multiple Linear Regression (MLR), Principal 

Component Regression (PCR), and Cluster-Multiple Linear Regression (CMLR) in predicting the next hours of O3 

concentration. Results show that the MLR models executed high accuracy for O3t+1 (R
2
= 0.313), O3,t+2 (R

2
= 0.265), O3,t+3 

(R
2
= 0.227) and O3,t+4 (R

2
= 0.217) as the best fitted-model. In conclusion, the MLR model is suitable for the next hour's O3 

concentration prediction. 
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INTRODUCTION 
New Malaysia Ambient Air Quality Standard 

(NMAAQS) by the Department of Environment Malaysia 

(DOE) has suggested that the average O3 concentration for 

1 hour is 200 µg/m
3
. Multiple Linear Regression (MLR) is 

commonly used based on multiple predictors for 

prediction. MLR was simple and easy to compute, leading 

to better and more commonly used mathematical modeling 

to explain the underlying influencing factors of O3 

variation (Napi et al., 2021). However, the 

multicollinearity problem becomes the main concern in the 

MLR as it can reduce the reliability of the predictive 

model (Fong et al., 2018). It is because when the 

independent variables in the regression model correlated 

with each other, the independent variables are supposed to 

be independent. Thus, the influences of meteorological 

factors and gaseous pollutants on O3 are varied in different 

areas. Hence, the C-MLR and PCR were introduced to 

reduce the multicollinearity problem. PCR is the hybrid 

model combination of PCA with MLR (Fong et al., 2018) 

and CMLR is another hybrid model combination of HCA 

with MLR (Leong et al., 2015). PCA is a statistical 

technique capable of generating statistically uncorrelated 

principal components (PCs) which are the linear 

amalgamation of the original variables (catchment and 

climatic characteristics) (Nguyen et al., 2020). PCA is also 

one of the methods for isolating independent factors that 

significantly clarify the variance of the dependent variable 

to evaluate the dependency of meteorological elements on 

particulate concentrations and is used as a predictor in a 

line regression (Zuska et al., 2019). The clustering 

analysis technique applied to aggregate the air quality 

stations is hierarchical clustering and known as 

unsupervised learning (Stolz et al., 2020). However, there 

are no consensus criteria for selecting the most proper 

technique. Clustering algorithms have been developed for 

data mining and different clustering algorithms or even 

different ways to use them on the same dataset can lead to 

different partition results but none of them have proved to 

be the best technique in a large configuration (Govender 

and Sivakumar, 2020). Prediction is important to provide 

cities and human settlements with inclusion, safe, 

resilience, and sustainability. These methods could help in 

obtaining accurate data for the trend of ozone. The trend of 

ozone would be different because the four areas are in 

different zones. Besides, to quantify the strength of the 

association of O3 with these factors to better understand 

the underlying mechanisms responsible for the changes in 

the surface of ozone levels in Cheras, Terengganu, 

Sarawak, and Sabah as a background. 

 

MATERIALS AND METHODS 

 

Data Acquisition and Processing 

The secondary data in terms of 3 years time span 

from 1
st
 January 2018 until 31

st
 December 2020 were used 

in this study. The study areas are Cheras (S1), Kuala 

Terengganu (S2), Kuching (S3) and Sabah (S4). Hourly 

data of air pollutants (O3, SO2, NO2, NO, NOX, CO, PM10, 

and PM2.5) along with meteorological factors (wind speed, 

relative humidity, solar radiation, and temperature) were 

obtained from the Department of Environment (DOE). 

mailto:samsuri@umt.edu.my
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The data are not available for several periods of hours 

because of missing due to several reasons. An incomplete 

dataset affects the quality of data and imputations are 

needed before further analysis. The deletion technique was 

used in this study due to the number of missing values of 

more than 40%. The deletion technique is suitable for 

missing data of more than 40% to avoid bias among the 

data. Then, the data set is used to analyze in terms of 

descriptive statistics, and inferential statistics.  

The dependent and independent variables consist 

of different units and normalization of the data set was 

required as the normalization can generate results ranging 

from 0 to 1. The normalization is also can interpret all the 

relationships in the data precisely and reduce bias. This 

scaling is suitable for improving the accuracy of numeric 

computation carried out by the MLR and PCR models for 

better outputs utilizing through min-max technique 

(Whalley and Zandi, 2016). The equation of normalization 

procedure as in Equation 1: 

 𝑍𝑖 = (𝑥𝑖−𝑚𝑖𝑛⁡(𝑥))(𝑚𝑎𝑥(𝑥)⁡−𝑚𝑖𝑛(𝑥)⁡)                                                       (1) 

 

Where 𝑍𝑖 = the i
th

 normalized value in the data 

set; 𝑋𝑖 = the i
th

 value in the data set; (𝑥) =⁡ the minimum 

value in data set (O3); (𝑥) ⁡= the maximum value of data 

set (O3) 

After deleting the missing value, the data set was 

divided into two data sets for the development of the 

models namely Multiple Linear Regression (MLR), 

Cluster Multiple Linear Regression (CMLR), and 

Principal Component Regression (PCR) models. Overall 

data were divided into 70% for model development and 

the remaining 30% was used for model validation (Roy 

and Ambure, 2016). The validations of the models are 

needed to deal with forecasting as it estimates the 

precision of developed or obtained models. Therefore, the 

performance of models during the development and 

validation phase was assessed by several performance 

indicators which frequently used in air pollution 

forecasting (Baklanov and Zhang, 2020).  

 

Data Analysis 
PCA is a mathematical method that transforms a 

collection of interrelated variables into a set of 

uncorrelated variables, the main components, using an 

orthogonal transformation (Mishra et al., 2017). A linear 

combination of the initial predictor variables to account 

for the variation in the information of each of the principal 

components. Many of the major elements were orthogonal, 

meaning that they were uncorrelated to each other. The 

first key component was measured in such a way that 

inside the dataset it accounts for the largest possible 

variation, followed by the concurrent components. 

Because the variables were calculated in separate units, 

normalized data was required before an interpretation of 

the main factor was done, which involves scaling each 

variable to 0 and 1. The principal component model 

presents the principal component as a linear function of 

the p-measured variables as expressed in Equation 2 

(Laban et al., 2018).  

 𝑍1 = 𝑎𝑖1𝑋1 + 𝑎𝑖2𝑋2 +⋯+ 𝑎𝑖𝑝𝑋𝑝                                   (2) 

 

Where, Ζ = the principal component; α = the 
component loading; Χ = the measured variable. 

MLR research leads to a deeper and commonly 

used interpretation of the underlying driving factors of O3 

heterogeneity by statistical simulation through quick and 

fast computation (Cifuentes et al., 2021). Future 

concentrations of O3 were important for prediction since 

effective steps may be suggested by the local authority to 

improve air quality at a given location and can be used for 

precautionary measures. MLR is a linear regression 

method for multiple explanatory variables and can be 

developed as the Equation (3): 

 𝑦 = 𝛽0 +∑ 𝛽𝑖𝑥𝑖 + 𝜀𝑖𝑛𝑖=1                                                   (3) 

 

Where, xᵢ = the explanatory variable of i (or 

independent variable); y = the dependent variable; βᵢ= the 

regression coefficient; ɛᵢ = the residual. 

The clustering ensemble method represents an 

aggregation of multiple clustering techniques. D’Urso et 

al., (2017) found that HC is the most widely used 

approach for aggregating air quality stations. It is 

commonly complemented with the application of the PCA 

technique for redundant analysis and selection. 

Furthermore, when there is no prior knowledge about an 

issue, k-means is the clustering technique with the greatest 

simplicity, efficiency, and low computational complexity 

(Alqurashi and Wang, 2018) as is the case with 

aggregation of monitoring sites as shown in Equation 4.  

 𝐶𝑅𝑘𝑛(%) = 100 [13𝑃𝑘,𝑛⁡𝑃𝐶𝐴 + 13𝑃𝑘,𝑛𝑘 − 𝑚𝑒𝑎𝑛𝑠 +13∑ 17𝑃𝑘,𝑛𝐻𝐶𝑗7𝑗=1 ]⁡                                                               (4) 

 

Where 𝐶𝑅𝑘𝑛 = measure of similarity among the 

selected clustering method; 𝑃𝑘,𝑛 = the possible 𝑘𝑡ℎ 

partition of the network; 𝐾 = represents different 

individual results from the application of each clustering 

techniques; 𝑛 = clusters; 𝑃𝑘,𝑛 = the partition from the 

clustering technique  𝑃𝑘,𝑛 takes a value of one if the partition is equal to 

at least one partition with exact 𝑛 clusters within other 

clustering methods and zero if the partition does not 

coincide with any other partition from a different 

clustering technique. The 𝐶𝑅𝑘𝑛 computed iteratively from 

two clusters to the maximum number of principal 

components and its maximum value is 100%. This value is 

achieved when every technique chooses the same partition 

as the best choice, specifying 𝑛 cluster. However, seven 

approaches to hierarchical clustering are possible(𝑗), and a 

weight of (1/7) is applied to each (Stolz et al., 2020). 

The models were evaluated based on the model 

error and accuracy using various output measures, 

Normalized Absolute Error (NAE), Root Mean Square 
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Error (RMSE), Mean Absolute Error (MAE), Index of 

Agreement (IA), and Coefficient of determination (R
2
). 

The best-fitted model was picked because it had high 

accuracy in which the IA and R
2
 were closer to 1, and the 

best error of RMSE, MAE, and NAE were close to 0. The 

specification of performance metrics used in this analysis 

were tabulated in Table-1.  

 

Table-1. Performance indicator. 
 

Performance Indicator Equation Description 

Normalized Absolute Error 𝑁𝐴𝐸 =⁡∑ |𝑃𝑖 − 𝑂𝑖|𝑛𝑖=1∑ 𝑂𝑖𝑛𝑖=1  
A value closer to zero is 

better 

Root Mean Square Error 

(RMSE) 
𝑅𝑀𝑆𝐸 = (1𝑛∑[𝑃𝑖 − 𝑂𝑖]²)1/2𝑛

𝑖=1  
A value closer to zero is 

better 

Mean Absolute Error 

(MAE) 𝑀𝐴𝐸 = ⁡∑ |𝑃𝑖 − 𝑂𝑖|𝑛𝑖=1 𝑛  
A value closer to zero is 

better 

Index of Agreement (IA) 𝐼𝐴 = 1 −⁡ ∑ (𝑃𝑖 − 𝑂𝑖)2𝑛𝑖=1∑ |𝑃𝑖 − 𝑂̅| + |𝑂𝑖 − 𝑂̅|2𝑛𝑖=1  
Value closer to one is 

better 

Coefficient of 

determination (R
2
) 

𝑅2 = (∑ (𝑃𝑖 − 𝑃)(𝑂𝑖 − 𝑂)𝑛𝑖 𝑛. 𝑆𝑝𝑟𝑒𝑑.𝑆𝑜𝑏𝑠 )2 
Value closer to one is 

better 

 

Where, 𝑛⁡ = total number of data; 𝑃𝑖 = predicted values; 𝛰ᵢ⁡ = observed values; P = mean of predicted; Ō⁡ = mean 

of observed values; 𝑆𝑝𝑟𝑒𝑑 ⁡= standard deviation of 

predicted values; 𝑆𝑜𝑏𝑠 ⁡=⁡standard deviation of observed 

values 

 

RESULT AND DISCUSSIONS 

 

Models Development 

The MLR models were developed, and the model 

summary was depicted in Table-2. The model was 

developed for predicting the next hour of O3, t+1 

concentration up to O3, t+4 concentration, as to discern the 

range of significant leads during daytime and night-time. 

The value of Variance Inflation Factor (VIF) for the 

independent variables for prediction O3, t+n, where n= 1, 2, 

3, 4 is lower than 10 which indicates there is no 

multicollinearity between the independent variables. 

Durbin Watson shows that the models did not have any 

first autocorrelation problems as the values were in 

between 0 and 4. During the daytime S1, S2, S3 and S4 

models show that O3, t+1 having a higher coefficient of 

determination of 0.313, 0.580, 0.492 and 0.514, 

respectively as compared to model O3, t+2, O3, t+3 and O3, t+4 

for each area as tabulated in Table-2. Meanwhile, 

throughout the night-time, the S1, S2, S3 and S4 models 

demonstrate that O3, t+1 has a higher coefficient of 

determination of 0.389,0.429,0.346, and 0.436 for each 

region than models O3, t+2, O3, t+3, and O3, t+4, as shown in 

Table-2. The lowest R
2
 was clarify by model O3, t+4 for 

each area during daytime, S1 (0.217), S2 (0.424), S3 

(0.388) and S4 (0.257) while during night-time, S1 

(0.285), S2 (0.256), S3 (0.209) and S4 (0.301). It 

demonstrates that the MLR models' ability to estimate 

ozone concentrations is greater for the next hour and lower 

for the following three hours (Awang et al., 2015). Based 

on this study, shows that different ozone precursors and 

meteorological factors are influencing O3, t+1 concentration 

during the daytime and night-time. Optimal conditions 

played an important role in the photochemical interaction 

of ozone and ozone precursors occurring during the 

daytime, which will raise the concentration of O3 in the 

atmosphere (Napi et al., 2021).  

The study proceeds using Principal Component 

Regression (PCR), which reduces the total number of 

parameters into a smaller number of principal components 

to reduce the multicollinearity. The PCR models were 

developed, and the model summary was depicted in Table-

3. The value of Variance Inflation Factor (VIF) for the 

independent variables for prediction O3, t+n, where n= 1, 2, 

3, 4 is 1 which is lower than 10 which indicates there is no 

multicollinearity between the independent variables. The 

Durbin Watson also shows the range between 0.987 and 

2.405 and the models did not have any first autocorrelation 

problems as the values were between 0 and 4. PCR is 

applied to analyze and forecast O3 concentrations for the 

next hour of O3, t+1 concentration up to O3, t+4 

concentration, to identify the range of significant daytime 

and night-time evidence using gaseous pollutants and 

meteorological data as independent variables. During the 

daytime, the S1, S2, S3, and S4 models show that O3, t+1 

have a higher coefficient of determination of 0.220, 0.419, 

0.343, and 0.328, respectively as compared to model O3, 

t+2, O3, t+3, and O3, t+4 for each area. Meanwhile, throughout 

the night-time, the S1, S,2, S,3, and S4 models 

demonstrate that O3, t+1 has a lower coefficient of 

determination with 0.302, 0.267, 0.190 and 0.34 for each 

region, respectively to models O3, t+2, O3, t+3, and O3, t+4. 

The lowest R
2
 was clarified by model O3, t+4 for each area 

during daytime, the S1 (0.150), S2 (0.332), S3 (0.274), 

and S4 (0.173) while during night-time, the S1 (0.190), S2 

(0.181), S3 (0.097) and S4 (0.276). The models showed 

that all inputs (PC-1, PC-2, PC-3, and PC-4) were chosen 

as important predictors for the O3 concentration over the 

following four hours.  
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The variability of ozone in the four areas was 

further investigated by conducting a Hierarchical 

Agglomerative Cluster Analysis (HACA). The results of 

the investigation during the daytime for S1 and S2 confirm 

having the same cluster which is C1 (PM10, PM2.5, SO2, 

NO, NO2, NOX, CO). S3 and S4 also shows having the 

same cluster C1 (PM10, PM2.5, CO, NO, NOX, NO2, SO2, 

WS, O3), C1 (PM10, PM2.5, CO, NO, NOX, NO2, WS, O3). 

There are different cluster (C2) for each site which are S1 

(C2: WS, O3), S2 (C2: O3, WS, SR), S3 (C2: SR, TEMP) 

and S4 (C2: SO2). S2, S3 and S4 confirm that have same 

cluster which are C3 (RH) while S1 (C3: SR, TEMP). 

There are different cluster for C4 (S1: RH), (S2: TEMP), 

and (S4: SR). S4 shows C5: Temp. During the night-time 

for each site of S1 and S2 (C1: PM10, PM2.5, SO2, NO, SR, 

WS, O3, NOX, CO, TEMP), S3 (C1: PM2.5, SO2, SR, NO, 

O3, WS, NOX, CO, TEMP) and S4 (C1: PM10, PM2.5, NO2, 

NOX, WS, NO, SR, O3, CO, SO2, Temp). Meanwhile, the 

S1, S2 and S4 confirm having the same cluster which is 

C2 (RH). S3 shows that having the C3 (PM10, RH). 

Awang et al., (2015) and Warmiński et al., (2018) claimed 

that wind speed and wind direction are the important 

meteorological parameters that have contributed to the 

variation of O3 concentration changes during night-time. In 

contrast to the daytime, solar radiation levels decrease at 

night, which is linked to the lack of significance of UVB 

radiation, temperature, and relative humidity on ozone 

concentration, this condition occurs of the dependence of 

temperature and relative humidity on sunlight, ozone 

concentrations, and other factors. 

CMLR models were developed, and the model 

summary was depicted in Table-4. The value of Variance 

Inflation Factor (VIF) for the independent variables for 

prediction O3, t+n, where n= 1, 2, 3, 4 is lower than 10 

which are range between 1.434 and 2.597 during daytime. 

Meanwhile, during night-time the value of VIF is range 

between 1.481 and 2.565. These indicate there is no 

multicollinearity between the independent variables. 

Durbin Watson shows that the models did not have any 

first autocorrelation problems as the values were between 

0 and 4. During daytime, the S1, S2, S3 and S4 models 

show that O3, t+1 have a higher coefficient of determination 

of 0.313, 0.580, 0.492 and 0.508, respectively as compared 

to model O3, t+2, O3, t+3 and O3, t+4 for each area. Meanwhile, 

throughout the night-time, the S1, S2, S3, and S4 models 

demonstrate that O3, t+1 also has a higher coefficient of 

determination of 0.389, 0.429, 0.346, and 0.436 for each 

region than models O3, t+2, O3, t+3, and O3, t+4. The lowest R
2
 

was clarified by model O3, t+4 for each area during daytime, 

S1 (0.213), S2 (0.424), S3 (0.387), and S4 (0.256) while 

during night-time, S1 (0.283), S2 (0.256), S3 (0.209) and 

S4 (0.301).  
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Table-2. Summary of Multiple Linear Regression (MLR) models. 
 

Model R R2 Durbin-Watson 

Daytime; Site 1 

O3, t+1= 0.461O3 – 0.495CO + 0.182PM2.5 – 0.182SO2 + 0.222NOX + 0.030WS + 0.224 0.559 0.313 2.235 

O3, t+2= 0.369O3 – 0.505CO + 0.113WS – 0.217SO2 + 0.085NO2 + 0.507PM2.5 – 0.052RH – 0.343PM10 + 

0.168NOX + 0.255 
0.515 0.265 1.523 

O3, t+3= 0.336O3 – 0.590CO + 0.076WS – 0.234SO2 + 0.499PM2.5+ 0.327NOX – 0.309PM10 – 

0.030RH+0.281 
0.476 0.217 1.403 

O3, t+4= 0.326O3 – 0.556CO + 0.103WS + 0.099NO2 – 0.185SO2 + 0.825PM2.5 – 0.677PM10 – 0.040RH + 

0.225NOX + 0.021SR + 0.256 
0.466 0.217 1.403 

Daytime; Site 2 

O3, t+1= 0.659O3 – 0.089RH – 0.132NO + 0.084NO2 – 0.068PM10 + 0.161 0.762 0.580 2.390 

O3, t+2 = 0.550O3 – 0.142RH – 0.118PM10 – 0.107NO + 0.074NO2 + 0.233 0.701 0.492 1.435 

O3, t+3 = 0.480O3 – 0.111RH – 0.119PM10 – 0.119NO + 0.058NO2 + 0.059TEMP + 0.031WS + 0.196 0.666 0.444 1.258 

O3, t+4 = 0.461O3 + 0.118TEMP – 0.150PM10 – 0.142NO + 0.099NO2 – 0.080RH + 0.153 0.652 0.424 1.122 

Daytime; Site 3 

O3,t+1 = 0.574O3 + 0.814PM2.5 + 0.042SR - 0.096TEMP - 0.108RH + 0.102WS + 0.119NO2 - 0.702PM10 + 

0.172 
0.702 0.492 2.406 

O3, t+2 = 0.525O3 + 0.148WS + 0.133NO2 + 0.065SR – 0.099TEMP – 0.092RH + 0.771PM2.5 – 0.681PM10 – 

0.058NO + 0.163 
0.671 0.450 1.581 

O3, t+3 = 0.493O3 + 0.065SR + 0.155NO2 + 0.128WS – 0.091TEMP – 0.112RH – 0.067NO + 0.740PM2.5 – 

0.689PM10 + 0.183 
0.646 0.417 1.479 

O3, t+4 = 0.509O3 + 0.066SR + 0.102WS – 0.073TEMP – 0.077RH + 0.092NO2 – 0.068NO + 0.155 0.623 0.388 1.392 

Daytime; Site 4 

O3, t+1 = 0.667O3 + 0.031SR + 0.048NO2 – 0.134TEMP – 0.126RH – 0.036WS + 0.232 0.717 0.514 2.352 

O3, t+2 = 0.563O3 + 0.040SR + 0.048NO2 – 0.118RH – 0.107TEMP – 0.032WS + 0.238 0.639 0.408 1.346 

O3, t+3 = 0.475O3 + 0.044SR – 0.083RH – 0.068TEMP – 0.031WS + 0.223 0.557 0.310 1.117 

O3, t+4 = 0.426O3 + 0.044SR – 0.447PM10 + 0.455PM2.5 + 0.072NO2 – 0.040CO – 0.012SO2 + 0.177 0.506 0.257 0.990 

Nighttime; Site 1 

O3, t+1 = 0.495O3 + 0.231SR + 0.104NO2 – 0.158RH – 0.083TEMP + 0.042WS – 0.111NO + 0.121CO – 

0.111PM2.5 + 0.150 
0.623 0.389 2.223 

O3, t+2 = 0.433O3 + 0.185NO2 + 0.244SR + 0.090WS – 0.134RH – 0.094TEMP – 0.128PM10 – 0.121NOX + 

0.099CO + 0.130 
0.560 0.314 1.517 

O3, t+3 = 0.395O3 + 0.251SR + 0.133NO2 + 0.088WS – 0.157PM10 – 0.094RH – 0.074SO2 – 0.105NO + 

0.102CO – 0.049TEMP + 0.097 
0.526 0.276 1.430 

O3, t+4 = 0.397O3 + 0.317SR + 0.179NO2 + 0.094WS – 0.339PM10 – 0.084SO2 + 0.193PM2.5 – 0.070RH – 

0.054TEMP + 0.104CO – 0.093NOX + 0.075 
0.534 0.285 1.363 

Nighttime; Site 2 

O3, t+1 = 0.566O3 + 0.166NO2 + 0.161SR – 0.171TEMP – 0.184RH – 0.391PM2.5 + 0.291PM10 + 0.135CO – 

0.131NO + 0.046WS + 0.237 
0.655 0.429 2.205 

O3, t+2 = 0.439O3 + 0.126NO2 + 0.181SR – 0.205RH - 0.150TEMP + 0.107WS + 0.204CO – 0.359PM2.5 – 

0.184NO + 0.274PM10 + 0.252 
0.583 0.340 1.439 

O3, t+3 = 0.380O3 + 0.274CO + 0.201SR – 0.187RH – 0.108TEMP + 0.169NO2 + 0.103WS – 0.080SO2 – 

0.194NOX – 0.077PM2.5 + 0.236 
0.536 0.288 1.274 

O3, t+4 = 0.383O3 + 0.213SR + 0.152NO2 – 0.114RH – 0.092SO2 + 0.063WS – 0.048TEMP + 0.188 0.506 0.256 1.1230 

Nighttime; Site 3 

O3, t+1 = 0.634O3 + 0.264NO2 + 0.267SR + 0.059CO – 0.005 0.588 0.346 2.199 

O3, t+2 = 0.572O3 + 0.257NO2 + 0.310SR – 0.022TEMP + 0.061CO – 0.141SO2 + 0.018 0.535 0.286 1.581 

O3t+3 = 0.512O3 + 0.245NO2 + 0.333SR - 0.088PM10 – 0.019TEMP + 0.118 0.490 0.240 1.448 

O3t+4 = 0.455O3 + 0.220NO2 + 0.276SR + 0.053WS – 0.028TEMP – 0.042RH + 0.076 0.457 0.209 1.358 

Nighttime; Site 4 

O3, t+1 = 0.466O3 + 0.279NO2 – 0.091RH + 0.031SO2 + 0.034TEMP + 0.118SR – 0.036WS – 0.024CO + 

0.282PM10 – 0.240PM2.5 + 0.075 
0.661 0.436 2.270 

O3, t+2 = -0.125RH + 0.413O3 + 0.033SO2 – 0.078CO + 0.419NOX + 0.045PM10 – 0.256NO + 0.092SR + 

0.139 
0.640 0.410 1.603 

O3t+3 = -0.094RH + 0.361O3 – 0.095CO + 0.035SO2 + 0.050TEMP + 0.470NOX – 0.296NO – 0.048WS + 

0.105 
0.591 0.350 1.475 

O3, t+4 = -0.087RH + 0.292O3 + 0.040SO2 + 0.061TEMP – 0.069CO + 0.144SR + 0.436NOX – 0.288NO + 

0.090 
0.549 0.301 1.379 
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Table-3. Summary of Principal Component Regression (PCR) models. 
 

Model R R
2 

Durbin-Watson 

Daytime; Site 1 

O3t+1 = -0.056PC1 – 0.046PC2 + 0.030PC3 + 0.316 0.469 0.220 1.759 

O3t+2 = - 0.055PC1 – 0.034PC2 + 0.019PC3 + 0.316 0.442 0.195 1.362 

O3t+3 = -0.055PC1 – 0.034PC2 + 0.019PC3 + 0.316 0.403 0.162 1.317 

O3t+4 = -0.053PC1 – 0.034PC2 + 0.017PC3 + 0.316 0.388 0.150 1.274 

Daytime; Site 2 

O3t+1 = -0.102PC1 + 0.031PC2 – 0.012PC3 +0.316 0.647 0.419 1.525 

O3t+2 = -0.098PC1 + 0.022PC2 – 0.007PC3 + 0.316 0.610 0.372 1.115 

O3t+3 = -0.096PC1 + 0.018PC2 – 0.007PC3 + 0.316 0.590 0.348 1.032 

O3t+4 = -0.094PC1 + 0.016PC2 – 0.006PC3 + 0.316 0.576 0.332 0.969 

Daytime; Site 3 

O3t+1 = 0.045PC1 – 0.036PC2 + 0.063PC3 + 0.263 0.586 0.343 1.653 

O3t+2 = 0.039PC1 – 0.036PC2 + 0.061PC3 + 0.263 0.556 0.309 1.220 

O3t+3 = 0.035PC1 – 0.033PC2 + 0.61PC3 + 0.263 0.536 0.287 1.163 

O3t+4 = 0.031PC1 – 0.035PC2 + 0.060PC3 + 0.263 0.524 0.274 1.150 

Daytime; Site 4 

O3t+1 = 0.051PC1 + 0.026PC2 – 0.005PC3 + 0.002PC4 + 0.292 0.573 0.328 1.528 

O3t+2 = 0.047PC1 + 0.022PC2 - 0.005PC3 +0.292 0.525 0.276 1.053 

O3t+3 = 0.043PC1 + 0.017PC2 – 0.004PC3 + 0.292 0.462 0.214 0.953 

O3t+4 = 0.039PC1 + 0.012PC2 – 0.005PC3 + 0.292 0.416 0.173 0.881 

Nighttime; Site 1 

O3t+1 = -0.015PC1 + 0.071PC2 + 0.010PC3 + 0.110 0.550 0.302 1.796 

O3t+2 = -0.010PC1 + 0.062PC2 + 0.007PC3 + 0.110 0.477 0.228 1.363 

O3t+3 = - 0.009PC1 + 0.058PC2 + 0.004PC3 + 0.110 0.443 0.196 1.265 

O3t+4 = - 0.005PC1 + 0.057PC2 + 0.003PC3 + 0.110 0.436 0.190 1.226 

Nighttime; Site 2 

O3t+1 = 0.077PC1 – 0.022PC2 + 0.008PC3 +0.195 0.516 0.267 1.628 

O3t+2 = -0.015PC1 + 0.009PC2 + 0.071PC3 + 0.195 0.468 0.219 1.193 

O3t+3 = -0.010PC1 + 0.011PC2 + 0.066PC3 + 0.195 0.434 0.188 1.125 

O3t+4 = -0.014PC1 + 0.005PC2 + 0.065PC3 + 0.195 0.425 0.181 1.093 

Nighttime; Site 3 

O3t+1 = -0.028PC1 + 0.036PC2 + 0.035PC3 + 0.164 0.435 0.190 1.620 

O3t+2 = -0.023PC1 + 0.032PC2 + 0.029PC3 + 0.164 0.370 0.137 1.271 

O3t+3 = -0.020PC1 + 0.030PC2 + 0.027PC3 + 0.164 0.344 0.118 1.184 

O3t+4 = -0.019PC1 + 0.023PC2 + 0.028PC3 + 0.164 0.311 0.097 1.161 

Nighttime; Site 4 

O3t+1 = 0.028PC1 + 0.056PC2 – 0.003PC3 + 0.102 0.620 0.384 1.963 

O3t+2 = 0.027PC1 + 0.054PC2 – 0.002PC3 + 0.102 0.599 0.358 1.495 

O3t+3 = 0.025PC1 + 0.051PC2 + 0.102 0.554 0.307 1.409 

O3t+4 = 0.023PC1 + 0.048PC2 + 0.002PC3 + 0.102 0.525 0.276 1.329 
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Table-4. Summary of Cluster-Multiple Linear Regression (C-MLR) models. 
 

Model R R2 Durbin-Watson 

Daytime; Site 1 

O3t+1 = -0.251NO + 0.162PM10 – 0.473CO – 0.191SO2 + 0.441NOX – 0.065NO2 + 0.447O3 + 0.037WS + 

0.020SR + 0.211 
0.560 0.313 2.237 

O3t+2 = -0.197NO – 0.471CO + 0.135PM10 – 0.229SO2 + 0.373NOX – 0.033NO2 + 0.376O3 + 0.110WS + 

0.025SR + 0.215 
0.513 0.263 1.526 

O3t+3 = -0.086NO – 0.557CO + 0.158PM10 – 0.250SO2 + 0.315NOX + 0.331O3 + 0.076WS + 0.020SR + 

0.252 
0.475 0.225 1.435 

O3t+4 = -0.133NO – 0.538CO + 0.139PM2.5 + 0.363NOX – 0.209SO2 + 0.324O3 + 0.093WS + 0.033SR + 

0.239 
0.461 0.213 1.403 

Daytime; Site 2 

O3t+1 = -0.132NO – 0.068PM10 + 0.084NO2 + 0.659O3 + 0.000114SR – 0.089RH + 0.161 0.762 0.580 2.390 

O3t+2 = -0.106NO – 0.118PM10 + 0.074NO2 – 0.007SO2 + 0.550O3 -0.000192SR – 0.142RH + 0.234 0.701 0.492 1.435 

O3t+3 = -0.118NO + 0.057NO2 – 0.125PM10 + 0.489O3 + 0.005SR – 0.106RH + 0.059TEMP + 0.198 0.666 0.443 1.260 

O3t+4 = -0.156NO + 0.100NO2 – 0.154PM2.5 + 0.453O3 + 0.003SR – 0.073RH + 0.130TEMP + 0.138 0.651 0.424 1.124 

Daytime; Site 3 

O3t+1 = 0.574O3 + 0.812PM2.5 + 0.103WS + 0.118NO2 – 0.706PM10 + 0.009CO + 0.042SR – 0.096TEMP 

– 0.109RH + 0.172 
0.702 0.492 2.406 

O3t+2 = 0.539O3 + 0.151WS + 0.116NO2 + 0.783PM2.5 – 0.711PM10 + 0.017CO + 0.063SR – 0.103TEMP 

– 0.094RH + 0.161 
0.670 0.449 1.581 

O3t+3 = 0.534O3 + 0.118WS + 0.115NO2 + 0.060SR – 0.082TEMP – 0.096RH + 0.155 0.641 0.411 1.472 

O3t+4 = 0.523O3 + 0.103WS + 0.070NO2 + 0.064SR – 0.075TEMP – 0.077RH + 0.153 0.622 0.387 1.391 

Daytime; Site 4 

O3t+1 = 0.710O3 + 0.017SR – 0.023TEMP + 0.091 0.713 0.508 2.356 

O3t+2 = 0.570O3 – 0.003CO - 0.113RH + 0.031SR – 0.112TEMP + 0.237 0.638 0.406 1.345 

O3t+3 = 0.491O3 – 0.347PM10 + 0.379PM2.5 – 0.018CO – 0.009SO2 + 0.035SR + 0.152 0.560 0.314 1.129 

O3t+4 = 0.427O3 – 0.435PM10 + 0.449PM2.5 – 0.030CO – 0.012WS - 0.011SO2 + 0.041SR + 0.181 0.506 0.256 0.988 

Nighttime; Site 1 

O3t+1 = 0.495O3 + 0.231SR + 0.104NO2 – 0.083TEMP + 0.042WS – 0.111NO – 0.111PM2.5 + 0.121CO – 

0.158RH + 0.150 
0.623 0.389 2.223 

O3t+2 = 0.433O3 + 0.185NO2 + 0.244SR + 0.090WS – 0.128PM10 – 0.121NOX + 0.099CO – 0.094TEMP 

– 0.134RH + 0.130 
0.560 0.314 1.517 

O3t+3 = 0.395O3 + 0.251SR + 0.133NO2 + 0.088WS – 0.157PM10 – 0.105NO + 0.102CO – 0.074SO2 – 

0.049TEMP – 0.094RH + 0.097 
0.526 0.276 1.430 

O3t+4 = 0.382O3 + 0.311SR + 0.173NO2 + 0.103WS – 0.379PM10 – 0.093SO2 + 0.285PM2.5 – 0.023RH + 

0.023 
0.532 0.283 1.360 

Nighttime; Site 2 

O3t+1 = 0.576O3 + 0.167NO2 + 0.165SR – 0.028SO2 – 0.380PM2.5 + 0.282PM10 + 0.128CO – 0.119NO – 

0.179RH – 0.168TEMP + 0.240 
0.655 0.429 2.203 

O3t+2 = 0.437O3 + 0.125NO2 + 0.179SR + 0.206CO + 0.107WS – 0.044SO2 – 0.179NO – 0.346PM2.5 + 

0.267PM10 – 0.204RH – 0.143TEMP + 0.252 
0.584 0.341 1.438 

O3t+3 = 0.380O3 + 0.274CO + 0.201SR + 0.169NO2 – 0.080SO2 + 0.103WS – 0.194NOX – 0.077PM2.5 – 

0.187RH – 0.108TEMP + 0.236 
0.536 0.288 1.274 

O3t+4 = 0.398O3 + 0.220SR + 0.150NO2 – 0.093SO2 – 0.109RH – 0.048TEMP + 0.190 0.505 0.256 1.230 

Nighttime; Site 3 

O3t+1 = 0.634O3 + 0.264NO2 + 0.267SR + 0.059CO – 0.005 0.588 0.346 2.199 

O3t+2 = 0.572O3 + 0.257NO2 + 0.310SR – 0.022TEMP + 0.061CO – 0.141SO2 + 0.018 0.535 0.286 1.581 

O3t+3 = 0.512O3 + 0.246NO2 + 0.333SR + 0.078PM2.5 – 0.020TEMP + 0.031 0.490 0.240 1.447 

O3t+4 = 0.455O3 + 0.220NO2 + 0.276SR + 0.053WS – 0.028TEMP – 0.042RH + 0.076 0.457 0.209 1.358 

Nighttime; Site 4 

O3t+1 = 0.466O3 + 0.279NO2 + 0.034TEMP + 0.031SO2 + 0.118SR – 0.036WS + 0.282PM10 – 

0.240PM2.5 – 0.024CO – 0.091RH + 0.075 
0.661 0.436 2.270 

O3t+2 = 0.419O3 + 0.002TEMP + 0.033SO2 – 0.079CO + 0.040PM10 + 0.425NOX – 0.259NO – 0.033WS 

+ 0.093SR – 0.124RH + 0.140 
0.640 0.410 1.605 

O3t+3 = 0.360O3 + 0.049TEMP + 0.035SO2 – 0.094CO – 0.049WS + 0.469NOX – 0.295NO + 0.079SR – 

0.093RH + 0.104 
0.592 0.350 1.476 

O3t+4 = 0.292O3 + 0.061TEMP + 0.040SO2 – 0.069CO + 0.144SR + 0.436NOX – 0.288NO – 0.087RH + 

0.090 
0.549 0.301 1.379 

 

Model Evaluation and Selection 

Five performance indicators were used to 

measure the error and accuracy of the models to evaluate 

the performance and test the best-fitted model. The 

performance indicators for MLR, PCR, and CMLR models 

for O3 prediction models are shown in Tables 5 and 6. The 
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error of the model was calculated using Normalized 

Absolute Error (NAE), Mean Absolute Error (MAE), and 

Root Mean Square Error (RMSE), with a value closer to 

zero indicating a better model. The accuracy of the 

models' output was calculated using the coefficient of 

determination (R
2
) and index of agreement (IA), where a 

number nearer to 1 indicates more accuracy (Moursi et al., 

2022).  

The best prediction model for O3 concentration, 

O3, t+n, where n= 1, 2, 3, 4 is MLR. Site 1 indicates the 

high and low error range from 1.00E
-2

 to 98.289 (NAE), 

0.409 ppb to 2.642 ppb (RMSE) and 0.015 ppb
 
to 0.019 

ppb (MAE) whereas has high accuracy between 0.071 to 

0.666 (IA) and 0.217 to 0.389 (R
2
). Meanwhile, the error 

and accuracy values for PCR at Site 1 range between 

2.197 and 70.588 (NAE), 0.107 ppb and 0.386 ppb 

(RMSE), 0.001 µg/m
3 

and 0.003 ppb (MAE), 0.231 and 

0.487 (IA) and 0.150 and 0.302 (R
2
) compared with the 

range values of error and accuracy for CMLR, Site 1, 

NAE from 1.141E
-2

 to 98.289, RMSE from 0.063 ppb to 

2.435 ppb
 
, MAE (0.0004 ppb to 0.017 ppb), IA (0.165 to 

0.746 ) and R
2
 (0.213 to 0.389). MLR for Site 2 also 

composed the low error and high accuracy ranges between 

1.201 and 40.110 (NAE), 0.096 ppb  and 0.866 ppb
 

(RMSE), 0.001 ppb and 0.006 ppb for MAE, 0.123 and 

0.402 (IA) and R
2
 (0.256 and 0.580) compared to PCR 

model with range between 3.340 and 4.276 (NAE), 

0.111ppb and 0.187 ppb (RMSE), MAE equals to 0.001 

ppb, 0.309 and 0.422 (IA)and R
2 

(0.181 and 0.419), 

CMLR model with range from 1.103 and 40.110 (NAE), 

0.090 ppb
 
to 0.866

 
ppb 

 
(RMSE), 0.001 ppb

 
to 0.006

 
ppb

 

(MAE), 0.123 to 0.408 (IA) and R
2
 (0.256 to 0.580).  

The model was used for Site 3 and Site 4 MLR 

with ranges 0.913 and 72.263 (NAE), 0.054 ppb
 
and 0.494 

ppb
 
(RMSE), 0.0003 ppb

 
and 0.003 ppb

 
(MAE), 0.092 and 

0.576 (IA) and 0.257 and 0.514 (R
2
), respectively 

compared to PCR for the same site range from 3.798 to 

6.455 (NAE), 0.043 ppb to 0.166 ppb
 
(RMSE), 0.0003

 
ppb

 

to 0.001 ppb
 
(MAE), 0.291 to 0.380 (IA), 0.097 to 0.343 

(R
2
) and 0.0512 to 10.321(NAE) and 0.042 ppb

 
to 0.052 

ppb
 
(RMSE), 0.0002 ppb

 
to 0.0004 ppb

 
(MAE), 0.265 to 

0.541 (IA), 0.173 to 0.384 (R
2
), and also compared with 

CMLR for the same site with a range between 0.835 and 

18.639 (NAE), 0.021 ppb
 
and 0.093 ppb

 
(RMSE), 0.001 

ppb
 
and 0.002 ppb

 
(MAE), 0.151 and 0.611 (IA), 0.209 

and 0.492 (R
2
) and 1.367 and 71.501 (NAE), 0.022 ppb

 

and 0.489 ppb
 
(RMSE), 0.0003 ppb

 
and 0.001 ppb

 
(MAE), 

0.100 and 0.924 (IA), 0.256 and 0.508 (R
2
), respectively. 

To demonstrate that the model could accurately 

forecast the following hours of O3 concentration, the best-

selected model (MLR) was assigned. The results of 

performance measures for the predicted O3 concentration 

to the next hours by using MLR detected has a small error 

measurement compared to the result of performance 

measures by using PCR and CMLR. The accuracy 

measure (IA and R
2
) also proves that the MLR model 

indicates high agreement between the observed and 

predicted data with increased accuracy compared to the 

results of accuracy PCR and CMLR. It was demonstrated 

that the MLR models can be utilized to forecast the O3 

concentration because of the good agreement between the 

predicted data and the observed data (Abdullah et al., 

2019; Awang et al., 2015).  

One of the most used techniques for forecasting 

ozone concentrations of weather variables and several 

atmospheric pollutants is multiple linear regression 

(Hashim et al., 2022). Furthermore, MLR enables the 

prediction of maximum O3 concentration in urban areas 

several hours in advance (Silva et al., 2022). According to 

Verma et al., (2015); Laban et al., (2018), and Silva et al., 

(2022), the relationship between the meteorological 

conditions and peak O3 concentration has been established 

using MLR analysis. Since MLR is a simple linear 

regression technique, it was frequently used to forecast O3 

concentration as well as other pollutants and weather 

parameters (Abdullah et al., 2019; Napi et al., 2021). 

Hence, from the above-mentioned studies, it can be proven 

that the O3 concentration was best explained by the MLR. 
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Table-5. Results of model evaluation through performance indicators during daytime. 
 

Site  Method NAE RMSE (ppb) MAE (ppb) IA R
2
 

S1 

O3t+1 

MLR 

PCR 

CMLR 

18.401 

2.396 

17.276 

2.193 

0.368 

2.047 

0.015 

0.003 

0.014 

0.666 

0.306 

0.744 

0.313 

0.220 

0.313 

O3t+2 

MLR 

PCR 

CMLR 

19.058 

2.197 

17.180 

2.297 

0.341 

2.052 

0.016 

0.002 

0.014 

0.076 

0.316 

0.745 

0.265 

0.195 

0.263 

O3t+3 

MLR 

PCR 

CMLR 

21.924 

2.453 

20.333 

2.642 

0.386 

2.435 

0.019 

0.003 

0.017 

0.067 

0.299 

0.746 

0.227 

0.162 

0.225 

O3t+4 

MLR 

PCR 

CMLR 

20.658 

2.392 

19.518 

2.483 

0.379 

2.334 

0.017 

0.003 

0.016 

0.071 

0.302 

0.746 

0.217 

0.150 

0.213 

S2 

O3t+1 

MLR 

PCR 

CMLR 

1.252 

4.586 

1.252 

0.096 

0.187 

0.096 

0.001 

0.001 

0.001 

0.358 

0.313 

0.358 

0.580 

0.419 

0.580 

O3t+2 

MLR 

PCR 

CMLR 

1.766 

4.409 

1.766 

0.146 

0.181 

0.146 

0.001 

0.001 

0.001 

0.309 

0.313 

0.309 

0.492 

0.372 

0.492 

O3t+3 

 

MLR 

PCR 

CMLR 

1.415 

4.320 

1.294 

0.130 

0.179 

0.109 

0.001 

0.001 

0.001 

0.322 

0.315 

0.345 

0.444 

0.348 

0.443 

O3t+4 

MLR 

PCR 

CMLR 

1.201 

4.232 

1.103 

0.113 

0.176 

0.090 

0.001 

0.001 

0.001 

0.338 

0.316 

0.365 

0.424 

0.332 

0.424 

S3 

O3t+1 

MLR 

PCR 

CMLR 

4.082 

5.946 

2.691 

0.091 

0.166 

0.071 

0.001 

0.001 

0.001 

0.529 

0.291 

0.510 

0.492 

0.343 

0.492 

O3t+2 

MLR 

PCR 

CMLR 

3.903 

5.023 

1.696 

0.107 

0.140 

0.092 

0.001 

0.001 

0.001 

0.542 

0.321 

0.611 

0.450 

0.309 

0.449 

O3t+3 

MLR 

PCR 

CMLR 

4.322 

4.425 

2.438 

0.112 

0.125 

0.090 

0.001 

0.001 

0.001 

0.525 

0.345 

0.579 

0.417 

0.287 

0.411 

O3t+4 

MLR 

PCR 

CMLR 

2.194 

3.798 

2.122 

0.096 

0.109 

0.093 

0.001 

0.001 

0.001 

0.047 

0.380 

0.587 

0.388 

0.274 

0.387 

S4 O3t+1 

MLR 

PCR 

CMLR 

1.306 

0.560 

0.295 

0.057 

0.043 

0.022 

0.0004 

0.0003 

0.0001 

0.527 

0.541 

0.725 

0.514 

0.328 

0.508 

 O3t+2 

MLR 

PCR 

CMLR 

1.185 

0.529 

1.419 

0.054 

0.042 

0.058 

0.0003 

0.0002 

0.0004 

0.576 

0.538 

0.533 

0.408 

0.276 

0.406 

 O3t+3 

MLR 

PCR 

CMLR 

0.913 

0.513 

1.367 

0.056 

0.043 

0.060 

0.0003 

0.0002 

0.0004 

0.570 

0.529 

0.533 

0.310 

0.214 

0.314 

 O3t+4 

MLR 

PCR 

CMLR 

3.033 

0.512 

2.297 

0.126 

0.044 

0.096 

0.0009 

0.0003 

0.0006 

0.324 

0.505 

0.406 

0.257 

0.173 

0.256 
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Table-6. Results of model evaluation through performance indicators during night-time. 
 

Site  Method NAE RMSE (ppb) MAE (ppb) IA R
2
 

S1 

O3t+1 

MLR 

PCR 

CMLR 

1.141E
-2

 

70.580 

1.141E
-2

 

0.537 

0.304 

0.409 

0.004 

0.002 

0.004 

0.165 

0.231 

0.165 

0.389 

0.302 

0.389 

O3t+2 

MLR 

PCR 

CMLR 

89.795 

61.382 

89.795 

0.409 

0.260 

0.409 

0.003 

0.002 

0.003 

0.194 

0.245 

0.194 

0.314 

0.228 

0.314 

O3t+3 

MLR 

PCR 

CMLR 

98.289 

12.666 

98.289 

0.457 

0.127 

0.457 

0.003 

0.001 

0.003 

0.181 

0.451 

0.181 

0.276 

0.196 

0.276 

O3t+4 

MLR 

PCR 

CMLR 

1.00E
-2 

8.691 

4.262 

0.470 

0.107 

0.063 

0.003 

0.001 

0.0004 

0.177 

0.487 

0.575 

0.285 

0.190 

0.283 

S2 

O3t+1 

MLR 

PCR 

CMLR 

17.365 

4.276 

16.315 

0.359 

0.158 

0.336 

0.002 

0.001 

0.002 

0.218 

0.361 

0.226 

0.429 

0.267 

0.429 

O3t+2 

MLR 

PCR 

CMLR 

28.527 

3.150 

28.945 

0.606 

0.133 

0.616 

0.004 

0.001 

0.004 

0.159 

0.393 

0.157 

0.340 

0.219 

0.341 

O3t+3 

 

MLR 

PCR 

CMLR 

40.110 

2.199 

40.110 

0.866 

0.111 

0.866 

0.006 

0.001 

0.006 

0.123 

0.422 

0.123 

0.288 

0.188 

0.288 

O3t+4 

MLR 

PCR 

CMLR 

3.375 

3.340 

3.254 

0.120 

0.138 

0.117 

0.001 

0.001 

0.001 

0.402 

0.387 

0.408 

0.256 

0.181 

0.256 

S3 O3t+1 

MLR 

PCR 

CMLR 

20.198 

6.455 

18.325 

0.271 

0.074 

0.279 

0.002 

0.001 

0.002 

0.173 

0.307 

0.151 

0.346 

0.190 

0.346 

 O3t+2 

MLR 

PCR 

CMLR 

18.639 

5.716 

18.639 

0.280 

0.064 

0.280 

0.002 

0.0004 

0.002 

1.014 

0.317 

0.152 

0.286 

0.137 

0.286 

 O3t+3 

MLR 

PCR 

CMLR 

0.773 

5.331 

0.835 

0.030 

0.059 

0.021 

0.0002 

0.0004 

0.0001 

0.533 

0.320 

0.609 

0.240 

0.118 

0.240 

 O3t+4 

MLR 

PCR 

CMLR 

1.792 

3.799 

1.792 

0.054 

0.043 

0.054 

0.0004 

0.0003 

0.0004 

0.431 

0.309 

0.431 

0.209 

0.097 

0.209 

S4 O3t+1 

MLR 

PCR 

CMLR 

21.145 

10.321 

21.145 

0.151 

0.054 

0.151 

0.001 

0.0003 

0.001 

0.235 

0.265 

0.235 

0.436 

0.384 

0.436 

 O3t+2 

MLR 

PCR 

CMLR 

64.027 

9.932 

64.648 

0.436 

0.052 

0.440 

0.003 

0.0004 

0.003 

0.101 

0.268 

0.100 

0.410 

0.358 

0.410 

 O3t+3 

MLR 

PCR 

CMLR 

72.263 

9.114 

71.501 

0.494 

0.047 

0.489 

0.003 

0.0003 

0.003 

0.092 

0.274 

0.924 

0.350 

0.307 

0.350 

 O3t+4 

MLR 

PCR 

CMLR 

53.610 

8.285 

53.610 

0.370 

0.043 

0.370 

0.003 

0.0003 

0.003 

0.118 

0.279 

0.118 

0.301 

0.276 

0.301 

 

CONCLUSIONS 

In conclusion, the development of MLR model 

revealed the range R
2 

was between 0.209 and 0.580, IA 

(0.047 and 5.76), RMSE (0.030 ppb and 2.642 ppb), NAE 

(0.913 and 98.289) and MAE (0.0003 ppb
 
and 0.019 ppb) 

while for PCR and CMLR, R
2
 range from 0.097 to 0.419, 

IA (0.231 to 0.541), RMSE (0.042 ppb to 0.386 ppb), 

NAE (0.0512 to 70.588), MAE (0.0002 ppb
 
to 0.003 ppb) 

and R
2
 (0.209 to 0.580), IA (0.100 to 0.924), RMSE 

(0.0.021 ppb
 
to 0.866 ppb), NAE (0.835 to 98.289), MAE 

(0.0003 ppb
 
to 0.017 ppb) respectively. In comparison to 

PCR and CMLR, the created MLR models are the most 

suitable and have the lowest errors for forecasting O3 

concentration to the next hours.  
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