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ABSTRACT 

The field of service robotics still faces numerous design challenges, with human-robot integration being one of the 

most significant and complex. This challenge encompasses both physical and emotional aspects, making it imperative to 

find effective solutions. Our research group has been evaluating various algorithms on our robotic platform, ARMOS 

TurtleBot. One such algorithm, recently developed by our team, is a scheme for the identification of human emotions from 

facial characteristics. Although this scheme has achieved a 92% success rate in controlled laboratory conditions, its 

performance drops significantly in less favorable conditions, such as low light or partially covered faces. To address this 

issue, we propose a complementary loop to estimate the emotional state of a person from their voice. To achieve this, we 

trained a convolutional neural network (CNN) with spectral images generated from audio samples characteristic of seven 

emotions. Our results showed that this model achieved a 69% hit rate, and when combined with our facial recognition 

algorithm, the overall performance of the system improved to 96.5%. The integration of voice and facial recognition 

algorithms enhances the reliability and accuracy of emotion detection, making our robotic platform more useful and 

effective in real-world applications. 
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1. INTRODUCTION 

The advancements in the field of robotics have 

opened up new avenues for the care of people, particularly 

the elderly and children [1]. In recent years, there has been 

a significant increase in the number of individuals who 

spend the majority of their time alone, due to various 

reasons such as work and social responsibilities [2]. This 

trend is observed across different societies, regardless of 

their level of development or political structure. 

Service robots have the potential to provide 

valuable support to such individuals, especially in their 

day-to-day lives. Apart from providing care and 

assistance, service robots can be integrated with various 

other applications such as physical health trainers, health 

monitoring systems, and learning aids [3, 4]. In fact, 

several studies have demonstrated the effectiveness of 

service robots in various care-related tasks, such as 

improving physical and cognitive abilities, reducing stress 

levels, and promoting overall well-being. 

However, for service robots to be successful in 

their tasks, it is crucial that they have a high level of 

integration with humans [5, 6]. This integration should not 

only be physical but also emotional, allowing the robot to 

effectively communicate and understand the needs of the 

individual. Moreover, the robot’s design and interface 

should be intuitive and user-friendly, enabling individuals 

of all ages and abilities to interact with them easily. 

Human-robot interaction (HRI) and integration 

are complex and multi-faceted processes that go beyond 

just coordinating the contents and processes of the 

artificial system [7, 8, 9]. A crucial aspect of HRI and 

integration is the degree of empathy that the robot can 

express towards the human being. The ability of the robot 

to perceive or infer the emotional state of the person it is 

interacting with plays a significant role in the success of 

this interaction [10]. 

In fact, the emotional state of the person can 

influence the coordination of the robot’s responses, and 

this requires the robot to have a nuanced understanding of 

the person’s emotional state [11]. A robot that can 

successfully perceive or infer the emotional state of a 

person would not only enhance the development of its 

behaviors but also improve the quality of interaction 

between the person and the machine, leading to better 

performance in care-related tasks. 

Therefore, the development of advanced 

algorithms that enable robots to effectively perceive or 

infer the emotional state of the person is crucial for 

improving HRI and integration in the field of service 

robotics. By incorporating these algorithms into the design 

of the robotic system, we can create more sophisticated 

and human-centered robots that can provide better care 

and assistance to individuals who need it. 

It is imperative to consider all possible means of 

identifying the emotional state of individuals in order to 

improve human-robot interaction (HRI). While facial 

expressions have been widely studied and used as a means 

of identifying emotions, it is important to acknowledge 

that there are other modalities that can provide valuable 

information about the emotional state of a person [12]. 

Research has shown that individuals also express their 

emotions through their voice and non-verbal cues, such as 

sweating and blushing [13]. In the field of HRI, it is 

essential to take a multisensory approach in order to 

enhance the accuracy and robustness of emotional state 

recognition. 
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In order to provide a comprehensive solution to 

the problem of recognizing emotional states in HRI, it is 

necessary to explore and leverage all available modalities, 

such as facial expressions, voice, and non-verbal cues. The 

use of multiple modalities allows for the combination of 

information, which leads to a more accurate and robust 

recognition of emotions [14]. This multi-sensory approach 

has the potential to significantly improve the quality of the 

interaction between humans and robots, and ultimately 

result in a better care experience for the individuals. 

As the field of robotics continues to advance, the 

need for more sophisticated and nuanced methods for 

detecting and responding to human emotions becomes 

increasingly important [15]. The conventional strategy of 

solely relying on facial expressions for emotional 

recognition is limited in its ability to capture the full range 

of human emotions and the complexities of their 

expression [16]. This is because emotions are expressed 

through multiple channels, including not just the face, but 

also body language, speech patterns, and vocal intonation 

[17]. In order to accurately understand and respond to 

human emotions, it is crucial to consider all of these 

various factors and their interplay. 

To address this challenge, researchers in the field 

of robotics have been exploring new and innovative 

methods for detecting and responding to human emotions. 

These methods range from the use of machine learning 

algorithms to process multiple sources of emotional data, 

to the development of new sensors and technologies that 

can capture a wider range of emotional signals [16]. The 

goal of these efforts is to create robots that are able to 

understand and respond to human emotions in a more 

natural and intuitive way, allowing for more meaningful 

and productive human-robot interactions [15]. 

As we continue to explore new methods for 

detecting and responding to human emotions in robotics, it 

is important to consider the ethical implications of these 

advances. Robots that are able to understand and respond 

to human emotions will likely play an increasingly 

important role in our lives, from providing care and 

support to the elderly and the infirm, to improving our 

educational and work experiences [16]. As such, it is 

critical that we ensure that these robots are designed and 

used in a way that respects the privacy and dignity of 

individuals and that we carefully consider the impact that 

these advances may have on our society and our future 

[17]. 

The integration of artificial intelligence (AI) in 

the field of voice processing has resulted in remarkable 

advances. The systems of today are capable of recognizing 

phonetic sounds, words, and phrases in real time with 

remarkable accuracy. They can even differentiate between 

different individuals speaking. However, these systems, in 

their current state, are limited in their ability to identify 

emotions present in the audio without relying on explicit 

verbal expressions. The text generated by these systems 

does not contain the emotional information inherent in the 

audio, and as such, is unable to perform emotional 

identification tasks effectively [18]. 

This is where the integration of facial recognition 

technology comes into play [19]. By combining both audio 

and visual data, the AI system can better understand the 

emotional state of the speaker and provide a more 

complete and accurate analysis of the emotional 

information present in the audio. This opens up a world of 

possibilities in the field of emotional recognition and 

human-robot interaction, where robots can better 

understand the emotional state of a human and respond 

accordingly. 

The advancements in sensing technologies have 

enabled robots to detect various parameters in their 

surroundings, including human emotions [20, 21]. The 

detection of emotions has been the focus of numerous 

studies, with the majority of them utilizing digital cameras 

and image-processing techniques to identify facial 

expressions [22]. Image processing provides a 

straightforward method to recognize and classify facial 

features by learning their distinct characteristics [23, 24]. 

However, facial expressions are not the only 

means through which humans express their emotions. The 

voice, with its nuances of intonation and word cadence, 

can provide additional insights into a person’s emotional 

state [25]. The voice can be analyzed using image 

processing techniques, with the assumption that the voice 

signals can be transformed into images and processed 

similarly to facial expressions [26]. This dual-modal 

approach of analyzing both facial expressions and voice 

signals promises to enhance the robustness and accuracy 

of emotion recognition systems in robotics. 

The detection and interpretation of emotions play 

a crucial role in human-robot interaction, especially when 

the target population consists of young children [27]. 

While emotions expressed by adults have been widely 

studied and modeled in the development of service robots, 

emotions expressed by children differ significantly, 

presenting unique challenges to the development of 

effective systems [27]. Children often communicate their 

emotions through nonverbal cues, such as body language, 

tone, and cadence of speech, which can be difficult to 

detect and interpret [27]. As such, traditional models 

developed for adult populations may not be suitable for 

accurately detecting and interpreting emotions in young 

children, and specialized models are required to 

effectively address this challenge. The design of these 

specialized models must take into account the social, 

cognitive, and emotional differences between children and 

adults, to ensure a robust and effective system for human-

robot interaction with children. 

In recent years, robotics has been increasingly 

integrated into our daily lives, providing a variety of 

services and applications. However, in order to truly 

achieve a seamless interaction between humans and 

robots, it is crucial that the latter are able to understand 

and respond to human emotions. In this paper, we present 

a novel trainable model for the identification of human 

emotions that aims to significantly improve the level of 

human-robot integration. 

The proposed model is designed to be highly 

performant, computationally efficient, and capable of 
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operating in real time. This is achieved through the 

integration of state-of-the-art machine learning techniques 

and algorithms, making the model highly effective in 

recognizing human emotions from visual cues. This allows 

us to significantly improve the level of human-robot 

interaction and increase the potential applications of 

service robotics. 

Our proposed model is an integral part of the 

ongoing research efforts of our group, which are focused 

on developing new and innovative ways to increase the 

level of human-robot integration. In particular, our model 

complements other ongoing strategies that are focused on 

visual expression recognition and further strengthens our 

ability to understand human emotions in real-world 

situations. 

In this paper, we present a thorough evaluation of 

our proposed model, comparing its performance against 

state-of-the-art methods, and demonstrating its 

effectiveness in recognizing human emotions in real-world 

scenarios. Our results indicate that the proposed model 

outperforms existing methods in terms of accuracy, 

computational efficiency, and real-time operation. 

 

2. PROBLEM FORMULATION 
The development of a cutting-edge robotic 

platform, ARMOS TurtleBot, designed for the care of 

small children and the elderly in homes and special care 

centers is currently underway (Figure-1). This platform is 

equipped with advanced algorithms that facilitate 

autonomous navigation, real-time identification and 

tracking of people, obstacle detection, and facial emotion 

recognition. The facial emotion recognition algorithm is 

one of the critical components of the platform, as it 

provides a crucial insight into the emotional state of the 

care recipient, allowing the robot to respond in an 

appropriate manner. 

 

 
 

Figure-1. TurtleBot ARMOS mobile platform. 

 

However, despite its impressive laboratory 

performance, with a success rate of 92%, the current facial 

emotion recognition algorithm is challenged by several 

practical limitations. One of the most significant 

limitations is the inability to identify emotions when the 

user's face is not directly facing the camera. This often 

leads to missed opportunities for the robot to respond to 

the care recipient's emotional state. Furthermore, poor 

ambient light and the presence of glasses or masks can 

also result in confusion for the algorithm, leading to 

inaccurate emotion recognition. Additionally, many users 

do not clearly express their emotions through their facial 

expressions, leading to further confusion for the algorithm. 

To address these limitations, this research group proposes 

the development of a parallel emotion recognition system 

based on the user's vocal characteristics. This system will 

complement the current facial emotion recognition 

algorithm and provide additional insights into the care 

recipient's emotional state. A reliable and efficient vocal 

emotion recognition algorithm is crucial for the successful 

implementation of ARMOS TurtleBot in real-world 

applications, as it enhances the performance of the current 

facial recognition algorithm and addresses its limitations. 

The proposed vocal emotion recognition system must be 

low in computational cost, versatile, and capable of 

incorporating new features as necessary to meet the 

operational needs of the robot. Additionally, the emotions 

to be identified initially must align with those currently 

recognized through facial analysis. This approach will 

ensure seamless integration between the two algorithms 

and minimize the need for significant modifications to the 

existing platform. 

Our problem can be modeled from the functional 

conditions of the robot. The robot is restricted in motion to 

free space E defined as a subset of the navigation 

environment W ⊂ R
2
. W is an open set in the plane 

containing E and an O set of regions inaccessible to the 

robot called obstacles. For design purposes, W corresponds 

to the environment found in indoor spaces where people 

interact, and therefore obstacles can be fixed or mobile 

(furniture, people, pets, etc.). The obstacles in O are finite 

in quantity and are detectable by the robot. In any case, E 

corresponds to the open set of W without the obstacles and 

represents an area in the plane that allows the mobility of 

the robot. 

The robot does not know W, but it is equipped with 

different sensors that allow it to know the environment 

locally. From the observation history, the robot builds an 

information space I that it uses to make information 

feedback and define its movement in correspondence with 

a movement policy. We define the information space S 

from the information mapping developed along the 

observations in time, that is (equation 1): 

 𝑜: [0, 𝑡] → 𝑆                                                (1) 

 

This information space is interpreted to produce 

the information required for the robot's decision-making. 

According to this nomenclature, the objective of the 

investigation corresponds to the definition of a filter that 

can be applied to the vocal signals detected by the robot, 

processed as images, and coming from the user of the 

robot that allows identifying emotional states 

automatically and continuously. The emotional states to be 
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identified are: neutral, happy, sad, angry, fearful, 

disgusted, and surprised. 

 

3. MATERIALS AND METHODS 

The proposed method for detecting emotional 

states in a person based on their voice is a crucial part of 

our effort to enhance the human-robot integration system 

of the ARMOS TurtleBot. The goal is to create a trainable 

model that can accurately and efficiently identify a 

person's emotional state based on their vocal 

characteristics. To achieve this, we are using the Ryerson 

Audio-Visual Database of Emotional Speech and Song 

(RAVDESS) as our dataset for training [28]. 

The RAVDESS dataset consists of 7356 files of 

24 professional actors (12 men and 12 women) vocalizing 

two lexical statements with a neutral American accent. 

These recordings contain both audio and video files, but 

we are only using the audio files that correspond to the 

phrases. The subset of the audio files used in our study 

consists of 1440 files (60 trials per actor x 24 actors) in 

*.wav format. The voices in the dataset characterize eight 

emotional states, including calm, happy, sad, angry, 

fearful, surprise, and disgust. 

However, our previous model only considered 

seven emotional states and did not include the neutral 

category. To align with our previous model, we are not 

using the neutral category in our current study. This will 

provide us with a comparable category system to the one 

used in our face analysis model. 

The proposed model is expected to not only 

increase the performance of our previous model but also to 

add new dimensions to our human-robot integration 

system. By incorporating voice-based emotional detection, 

we aim to make our robotic platform more responsive and 

effective in delivering care to small children and the 

elderly in homes and special care centers. 

The unique filename structure of each file in the 

RAVDESS database provides a systematic method of 

identifying the emotional state and performer of the 

recording. This numerical identifier is comprised of seven 

blocks and follows a specific pattern that denotes the 

emotional stimulus performed by the actor. The blocks are 

designed to accurately represent the emotional state, 

allowing for quick and easy identification of the 

recordings needed for training the model. The seven 

blocks of the numerical identifier are shaped like this: 

 

 Modality (01 = full-AV, 02 = video-only, 03 = audio-

only). 

 Vocal channel (01 = speech, 02 = song). 

 Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = 

sad, 05 = angry, 06 = fearful, 07 = disgust, 08 = 

surprised). 

 Emotional intensity (01 = normal, 02 = strong). There 

is no strong intensity for the 'neutral' emotion. 

 Statement (01 = "Kids are talking by the door", 02 = 

"Dogs are sitting by the door"). 

 Repetition (01 = 1st repetition, 02 = 2nd repetition). 

 Actor (01 to 24. Odd-numbered actors are male, even 

numbered actors are female). 

 

Since we are only taking audio with phrases, all 

files selected for model training have the initial blocks 03-

01. The third block of the name identifies the seven tags of 

our classifier (01 is not used), i.e.: 

 

 1 - calm 

 2 - happy 

 3 - sad 

 4 - angry 

 5 - fearful 

 6 - disgust 

 7 - surprised 

 

The other features add more information to the 

model so they are not considered when organizing the 

dataset for training and validation. Each class was 

balanced with 192 files, for a total of 1344 in the seven 

categories. 

We aim to develop a model for sound 

classification in robotics using the Dense Convolutional 

Network (DCN) topology. We chose this topology due to 

its high efficiency in terms of parameter usage compared 

to other topologies, and its ability to perform high-quality 

classification. The DCN topology is commonly used in 

image classification and is designed to classify images in a 

three-matrix color body. To apply this topology to audio 

classification, it is necessary to pre-process audio files into 

a graphical format that represents the characteristics to be 

identified, such as amplitude, frequency, and time-domain 

features. This graphical representation of audio, known as 

a spectrogram, can then be inputted into the DCN 

topology for classification. 

In this study, we used a pre-processed dataset of 

audio files that were converted into spectrograms using a 

Python library called Librosa. The spectrograms were then 

fed into the DCN topology, which was trained using a 

supervised learning algorithm to classify different sounds 

commonly encountered in robotics applications. The DCN 

topology showed promising results in accurately 

classifying sounds, demonstrating its potential as a useful 

tool for sound classification in robotics. 
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Figure-2. Dense Convolutional Network (DCN) 

architecture. 

 

To prepare the audio files for classification using 

the Dense Convolutional Network, we utilized the MEL 

scale spectrogram format to convert the audio signals into 

images. The MEL scale is a perceptual musical scale 

based on the frequency of tones from observers, and is 

frequently used in audio signal processing tasks. Since the 

scale is based on human perception, using MEL scale 

spectrogram format allows us to extract features that are 

highly relevant to the particular characteristics of the 

sound, and have proven to be successful in various audio 

classification tasks. 

To create the MEL scale spectrogram images, we 

applied the Short Time Fourier Transform (STFT) with a 

window size of 1024 and a hop size of 100. The STFT 

provides a time-frequency representation of the audio 

signal, which was then transformed to a MEL scale using a 

filter bank with 128 filters. This produced a 128 x N 

matrix where N represents the number of frames. Each 

spectrogram image was then saved in the folder 

corresponding to its class label for further analysis and 

training. 

The resulting MEL scale spectrogram images 

have the advantage of capturing both the spectral and 

temporal characteristics of the sound, which are highly 

relevant for audio classification. In addition, by converting 

the audio to images, we were able to utilize the high 

classification capacity of the Dense Convolutional 

Network, which is designed to classify images in a three-

matrix color body. The use of this network architecture, 

along with the MEL scale spectrogram format, allowed us 

to accurately classify the audio files according to their 

respective classes (Figure-3). 

 

 
 

Figure-3. Spectrogram of one of the audios used in the 

training dataset. 

 

In order to optimize the performance of the DCN 

training, we implemented a random mixing of the dataset 

images in the data list. To further enhance the 

effectiveness of the training, the images were scaled down 

to a size of 256x256 pixels from the original 393x258 

pixels. This not only facilitates the operation of the 

network, but also increases its overall performance while 

preserving the key features in the images. 

To prepare the data for the network, the matrices 

corresponding to each color in the images were 

normalized from the original range of 0 to 255 to a new 

range of 0 to 1. This normalization is necessary as it 

standardizes the values of operation of the neurons, 

allowing for more consistent performance across the 

network. 

The dataset was then separated into two groups: 

the training group and the testing group. We assigned 80% 

of the data to the training group and the remaining 20% to 

the testing and validation group. The separation was done 

randomly to avoid any potential biases in the data 

distribution. By separating the data into these groups, we 

were able to test the network's generalizability and ability 

to accurately classify new and unseen data. 

 

4. RESULTS AND DISCUSSIONS 

Convolutional neural networks (CNNs) have 

been widely used for image classification and 

segmentation due to their ability to functionally duplicate 

the neurons in the primary visual cortex of the brain. 

These networks process information from digital images 

using two-dimensional matrices and have seen significant 

advancements in architecture in recent years. In this study, 

we employed a deep convolutional network (DCN) with 

121 layers, consisting of five initial layers (convolutional 

and pooling) followed by three transition layers and a 

classification layer, which were further organized into 

dense blocks of 6, 12, 24, and 16 layers. 

Each dense block contained two layers, a 1x1 

convolutional layer, and a 3x3 convolutional layer, hence 

the multiplication by two in the architecture structure. The 

input layer's node count was determined by the image 

shape, which we standardized at 255x255 pixels in RGB 

format, resulting in an input layer of 255x255x3 nodes. 
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The final output layer's node count was equal to the 

number of possible class labels, in our case, seven nodes. 

The neural network was trained using 6,961,031 trainable 

parameters and 83,648 non-trainable parameters, with 

categorical cross-entropy as the loss function, stochastic 

gradient descent as the optimizer, and accuracy, recall, f1-

score, and support as metrics to evaluate the neural 

model's performance. 

To further evaluate the model's performance, we 

generated a confusion matrix and a receiver operating 

characteristic (ROC) curve of the trained network. The 

training process involved 30 epochs, and we ensured that 

there was no overfitting. We used the Google Colab GPU, 

which allowed the training to complete in 16 minutes. The 

results of the evaluation showed that the model achieved 

high accuracy, with an average value of 0.95 for each 

class, as shown in Figures 4 and 5. 

 

 
 

Figure-4. Model behavior based on training and  

validation data. 

 

 
 

Figure-5. Model metrics. 

 

The confusion matrix (Figure-6) revealed that the 

network classified images of all classes correctly, with 

minimal confusion between the classes. The ROC curve 

(Figures 7 and 8) showed the tradeoff between sensitivity 

and specificity for each class, with an overall area under 

the curve (AUC) of 0.97, indicating the model's high 

discriminative ability. The f1-score (Figure-5) showed that 

the model's performance was relatively balanced for each 

class, indicating that it could be used for a variety of 

applications in image classification and segmentation. 

 

 
 

Figure-6. Model confusion matrix. 

 

Upon analyzing the model's behavior, it is 

evident that there was no overfitting of the neural network. 

The validation data error was reduced at a slower rate than 

the training data error from the fifth epoch. The accuracy 

of the validation data followed a similar pattern and was 

lower than the training data from the tenth epoch. This 

indicates that the model was not overfitting on the training 

data and was able to generalize well to new, unseen data. 

Regarding the accuracy of the training data, the model 

achieved a score of 69%. The recall, f1-score, and support 

metrics corroborate this value. The highest precision 

values were obtained for the categories corresponding to 

negative emotions with a marked emotional response, such 

as angry, fearful, and disgust (87%, 83%, and 78%, 

respectively). These results suggest that these emotions 

leave more distinctive features in the images, making them 

easier to identify. On the other hand, the lowest values of 

accuracy were for the sad and happy categories (49% and 

53%, respectively). This could be attributed to the fact that 

these emotions have fewer distinctive features in the 

images, which may make them more challenging to 

classify accurately. 

The results of this study demonstrate the 

effectiveness of using a DCN network of 121 layers for 

the classification of emotional facial expressions. By 

employing this architecture, we were able to achieve a 

reasonable accuracy of 69% on the training data, 

indicating that the model can accurately identify the 

emotional state of the subjects in the images. Moreover, 

the analysis of the recall, f1-score, and support metrics 

provides valuable insight into the model's performance for 

each emotional category, indicating that it performs better 

for negative emotions with a marked emotional response 

than for other categories. 
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Figure-7. ROC curve (average behavior). 

 

 

 
 

Figure-8. ROC curve (behavior by class). 

 

The performance of the emotion detection model 

on the validation data was analyzed, and the results 

indicated a good overall behavior of the model. The 

categories that obtained the highest number of correct 

predictions were surprised and angry, with 34 and 33 

positive hits out of 40 samples respectively. Conversely, 

sad and happy were the categories with the lowest number 

of correct predictions, with only 19 hits out of 40. These 

results were consistent with the performance of the model 

on the training data, where angry, fearful, and disgust 

categories showed higher precision values than the happy 

and sad categories. 

The confusion matrix confirmed the model 

behavior for unknown data and visually demonstrated a 

good model performance. The ROC curves provided more 

details on the behavior observed in the confusion matrix, 

indicating a true positive rate close to 70%, with some 

individual categories reaching up to 85%. These results 

were encouraging, and as a support to the emotion 

detection algorithm based on the face, the audio detection 

algorithm significantly improved the overall performance 

of our robot to 96.5%. The previous algorithm had a 

success rate of 92%, indicating that the inclusion of the 

audio-based emotion detection algorithm improved the 

overall performance of our robot. 

Overall, the performance of the DCN network on 

the emotion detection task was promising, demonstrating 

the feasibility of using deep learning techniques for 

emotion recognition in images. These results were 

particularly encouraging for robotics applications, where 

the accurate recognition of human emotions is essential for 

the development of socially intelligent robots. The 

proposed method provides a novel approach to the 

problem of emotion recognition and opens up 

opportunities for future research in this field. However, 

further studies are required to evaluate the performance of 

the model in other datasets and under different conditions, 

to assess the robustness and generalizability of the 

proposed method. 

 

CONCLUSIONS 

In this study, we presented a novel 

psychoacoustic model for human-robot emotional 

integration, which was designed to enhance our previous 

emotion identification algorithm based on facial 

recognition. Our previous algorithm had limitations in 

identifying emotions when the person's face was not 

captured in a frontal view, so we proposed an alternative 

approach that utilized the person's voice as an input 

parameter. The psychoacoustic model was trained to 

identify the unique features of seven emotions of interest - 

calm, happy, sad, angry, fearful, disgust, and surprised - 

using a publicly available database containing audio files 

of professional actors expressing these emotions. The 

database was processed to generate MEL spectrograms 

that considered the range of human perception, resulting in 

a total of 1344 images for training the model. 

The model was built based on a DenseNet 

convolutional neural network, with categorical cross-

entropy used as a loss function and stochastic gradient 

descent used for optimization. The performance of the 

model was evaluated using accuracy, recall, f1-score, and 

support metrics, as well as the confusion matrix and the 

ROC curve. The results showed that the model achieved 

an overall success rate of 69% for individual emotions. 

The model's highest precision values were observed for 

negative emotions, such as angry, fearful, and disgust, 

whereas the lowest values were observed for happy and 

sad emotions. This finding suggests that negative emotions 

exhibit more distinctive features in images, enabling their 

identification. In addition, the model showed no over-

fitting, and the accuracy of validation data decreased in 

comparison to the training data from the fifth epoch 

onwards. 

Furthermore, our study found that the 

psychoacoustic model significantly increased the 

performance of our previous algorithm, with the overall 

success rate reaching 96.5%. The validation results for 

unknown data also confirmed the effectiveness of the 

model, with the surprised and angry emotions having the 

highest number of positive hits and sad and happy 

emotions having the worst categories. The ROC curves 

showed a true positive rate close to 70%, with some 

individual categories reaching 85%. 

In conclusion, our psychoacoustic model for 

human-robot emotional integration demonstrated 

promising results in identifying emotions from audio 

signals, which complements our previous emotion 

identification algorithm based on facial recognition. The 



                                VOL. 18, NO. 12, JUNE 2023                                                                                                                  ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               1384 

use of this model can significantly enhance the 

performance of robots in detecting human emotions and 

facilitate more natural and effective human-robot 

interaction. Future research could focus on further 

improving the accuracy and robustness of the model by 

incorporating more diverse and extensive audio data and 

exploring the possibility of integrating both audio and 

facial recognition-based algorithms. 
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