
 VOL. 18, NO. 13, JULY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1539

TECHNIQUE FOR PREPARATION OF LARGE DATA FOR

MACHINE LEARNING ALGORITHMS TO GENERATE

INTRUSION DETECTION SYSTEM

S. P. Senthilkumar and Aranga. Arivarasan,
Department of Computer and Information Science, Annamalai University, Annamalainagar, Tamil Nadu, India

E-Mail: senthil.sp74@gmail.com

ABSTRACT

Machine Learning has become the norm for creating models that predict and detect security breaches in computer
systems. Modelling of machine learning systems requires a huge amount of data for training and testing the machine
learning algorithm. The present research is concerned with preparing the data prior to feeding it to machine learning
algorithms. The necessity for such preparation occurs due to the physical limitations of spreadsheet applications (with
regard to the number of records they can handle). This research describes a simple shell scripting approach to combine,
extract, and weed out unwanted records and finally prepare the data for feeding to machine learning algorithms.

Keywords: machine learning, security breaches, data preparation, shell scripting, data transformation.

Manuscript Received 30 June 2023; Revised 22 August 2023; Published 13 September 2023

1. INTRODUCTION

The present research is concerned with creating a
machine learning model for a dataset provided by the
Canadian Institute of Cybersecurity (CIC,
https://www.unb.ca/cic/) vide Intrusion Detection System
(IDS) Dataset 2017, which is available for download
through the page
https://www.unb.ca/cic/datasets/index.html (after filling an
information sheet about the persons downloading the
dataset). The dataset has got 8 different files with a record
count of around 2.7 million rows with 79 columns each.
On combining the entire dataset into a single file,
spreadsheet programs are inadequate to edit the dataset.
Hence, it was decided to combine all the records and edit
the above data using a shell script on Ubuntu Linux
(available in the standard shell environment of any UNIX-
compliant system). The task was to rearrange the data in
the proper format, assign numeric code to 14 types of
attacks enlisted in the CIC dataset, and remove NaN (Not
a Number) and Infinity values from the data table. The
objective of the present research is to create a single data
file containing all the records of the CIC dataset and to
make it suitable for supervised machine learning through
the substitution of numeric values for human-readable
descriptions. The work was completed through several hit-
and-fail trial runs.

2. RELATED STUDIES

Ranjit Panigrahi et al. conducted a
comprehensive analysis of the CICIDS2017 dataset from
the CIC (Canadian Institute of Cybersecurity) to evaluate
cybersecurity and assess detection and mitigation methods.
They identified limitations in existing datasets that could
introduce biases into traditional IDS detection systems.
Their objective was to propose the development of a
merged dataset to overcome these limitations and enhance
classification and detection capabilities. The team
emphasized the unique characteristics and challenges

posed by the dataset during their analysis. [1] Mossa
Ghurab et al. conducted a thorough study highlighting the
importance of utilizing network-based datasets for
evaluating intrusion detection methods. Their analysis
encompassed several well-known datasets, ultimately
recommending the use of contemporary datasets like
CIDDS-001, CICIDS2017, and CSE-CIC-IDS2018 for
assessing network intrusion detection systems (NIDS).
This research emphasizes the significance of carefully
selecting suitable datasets to ensure accurate performance
evaluation of NIDS. [2] Senthilkumar S.P. et al. conducted
a study on malicious intrusion attempts using the CIC IDS
2017 dataset. They achieved high accuracy rates of
99.853% and 89.789% with the Random Forest Classifier
and Naive Bayes algorithms, respectively. The study
emphasized the effectiveness of these supervised learning
methods, with Naive Bayes demonstrating fast
computational speed and the Random Forest Classifier
surpassing previous research. [3] Bhoopesh Singh Bhati et

al. propose an approach that integrates XGBoost with
ensemble-based IDS to improve its performance. By
effectively managing the bias-variance trade-off, the
approach achieves an exceptional accuracy rate of 99.95%
in detecting and preventing intrusions, as demonstrated
through experiments with the KDDCup99 dataset. [4]
Senthikumar S.P. et al. created a refined dataset from the
CIC IDS 2017 dataset, consisting of 2.8 million records
and 79 parameters. After removing unsuitable records, the
dataset's integrity was ensured. Using the Random Forest
Classifier (RFC), the analysis resulted in an impressive
accuracy rate of 99.853%. [5] Senthilkumar S.P. et al.
conducted a comprehensive survey on Intrusion Detection
Systems (IDS) and evaluated different machine learning
(ML) models. After a thorough comparison of their
strengths and weaknesses, the RF Classifier method was
identified as the most practical choice due to its superior
accuracy. [6] In their work, Tianqi Chen et al. introduce
XGBoost, an advanced tree boosting system renowned for

mailto:senthil.sp74@gmail.com
https://www.unb.ca/cic/
https://www.unb.ca/cic/datasets/index.html

 VOL. 18, NO. 13, JULY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1540

its exceptional scalability and performance. The authors
devise a novel algorithm specifically tailored to efficiently
handle sparse data, while also proposing a weighted
quantile sketch method for approximate learning. They
highlight the importance of cache access patterns, data
compression, and sharding in constructing a machine
learning system that can scale effectively. By integrating
these insights, XGBoost showcases its remarkable
capability to tackle real-world problems with minimal
resource demands, marking a significant advancement in
the field [7]. Yulianto et al. conducted a study aimed at
improving the performance of AdaBoost-based Intrusion
Detection Systems (IDS) using the CIC IDS 2017 Dataset.
They employed advanced techniques, including SMOTE,
PCA, and EFS. Experimental results showcased the
superiority of their proposed method compared to a
previous approach. The proposed approach achieved
remarkable performance metrics, including high accuracy,
precision, recall, and F1 Score. These findings provide
substantial evidence of the effectiveness of the novel
techniques in advancing intrusion detection capabilities
[8]. XGBoost has been identified as a highly
recommended classification method by Sukhpreet Singh
Dhaliwal et al. after an extensive review of multiple
studies. Its advantageous features, including adaptability
across operating systems, superior accuracy, ability to
handle diverse data inputs, provision of both linear model
solver and tree algorithms, and successful deployment in
industries for processing large volumes of data, have
contributed to its widespread acceptance. XGBoost
consistently delivers impressive results in various
applications. [9] Sivapriya et al. Present a novel intrusion
detection system in their research paper. The system
utilizes the XG Boost algorithm for detecting intrusions.
The KDD-99 dataset is employed as input for
implementing this approach. The findings of the study

reveal that the intrusion detection system, which
incorporates the XG Boost algorithm, outperforms other
existing algorithms in terms of efficiency and accuracy.
[10] Preethi Devan et al. Introduced an XGBoost-DNN
model that combines feature selection through XGBoost
with deep neural networks for network intrusion
classification. Their study demonstrated the model's
superior performance when compared to existing shallow
methods on the NSL-KDD dataset. The model utilizes the
Adam optimizer, softmax classifier, and is implemented
using Tensor Flow and Python. To validate its
performance, cross-validation techniques were employed.
Based on the obtained results, a deep learning model
consistently achieves a classification accuracy of 97%,
surpassing existing models. This model has a competitive
advantage over others. The current study focuses on binary
classification, but there is potential for future expansion to
incorporate multiclass classification. [11] Manish Khule et

al. assessed various machine learning algorithms and
proposed the use of XGBoost, a technique that combines
multiple learners, for Intrusion Detection Systems (IDS)
using the NSL-KDD99 dataset. Comparative testing
showed that XGBoost outperformed SVM in terms of
accuracy, leading to its selection as the preferred
algorithm. [12] Badisa Naveen et al. compared the
performance of popular machine learning algorithms in an
Intrusion Detection System (IDS) model. Gradient
Boosting and XGBoost, belonging to the Boosting
Algorithms Family, outperformed other algorithms,
indicating their effectiveness for IDS. [13]

3. SHELL SCRIPTING TO HANDLE LARGE CSV

 DATA

The data contained in the following 8 csv files
attributed to the Canadian Institute of Cybersecurity was
combined into a single file:

Table-1. CIC IDS 2017 Dataset files.

The total number of records in the CIC dataset
was 2,830,743 (excluding header rows). The first objective
was to combine all the dataset files into a single large file
containing all the records to easily feed into the machine
learning algorithm. The merger of files is an easy process
with the help of the cat command. The header rows would
be repeated at 8 different locations (representing the
header row of each dataset file). The header row would be
later removed using the sed command by substituting a
blank value against the given row header.

The data contained in the 8 csv files were
merged, and numeric replacement values provided through
the following script entered in the file datafilter.sh:
#!/bin/sh
cat *.csv | sed 's/ //g' | sed 's/BENIGN/1/' | sed 's/Bot/2/' |
sed 's/DoSGoldenEye/3/' | sed 's/DoSHulk/4/' | sed
's/DoSSlowhttptest/5/' | sed 's/DoSslowloris/6/' | sed
's/FTP-Patator/7/' | sed 's/Heartbleed/8/' | sed
's/Infiltration/9/' | sed 's/PortScan/10/' | sed 's/SSH-
Patator/11/' | sed 's/WebAttack-Brute Force/12/' | sed
's/WebAttack-SqlInjection/13/' | sed 's/WebAttack-

 VOL. 18, NO. 13, JULY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1541

XSS/14/' | sed '/DestinationPort/d' | sed '/NaN/d' | sed
'/Infinity/d' > data.txt
head -1 M*.csv | sed 's/ //g' > dt.txt && cat data.txt >>
dt.txt

The input values were mostly numeric. In some
cases, the input values happened to be NaN or Infinity,
which corresponded to Not a Number or Infinitely large
value. The machine learning algorithms rejected the
apparent text input values. The CSV files contained a total
of 1,358 NaN values and 2,867 Infinity values. But the
datafilter.sh script deleted all rows containing NaN or
Infinity value. Supervised machine learning algorithms are
limited to comprehending numeric values exclusively. The
79th column of each row contained the classification of the
attack type. Columns 1 to 78 were input parameters for
machine learning and the 79th column is the prediction
parameter. Table 1 depicts the 14 human readable
classifications, the numeric replacement provided for the
classifications, and the number of rows in which such
replacements were found.

Table-2. Attack types, numeric replacements and
occurrence count.

After filtering and preparing the data, the file
dt.txt (which held the entire data) contained 2,827,876
rows of data (excluding the header row). So many rows of
data cannot be handled by any of the common spreadsheet
application programs, which have a physical limit below
half of the number of rows contained in the dt.txt file.
Finally, the dt.txt file is renamed to dt.csv (to reflect the
type of data it contains).

4. XG BOOST

Ensemble learning combines weak learners to
improve performance by leveraging their collective
strength. Bagging uses random sampling and aggregation
of predictions to enhance decision-making. Boosting
assigns higher weights to misclassified samples,

transforming weak learners into proficient models. Both
methods address limitations and improve accuracy.
XGBoost, an ensemble additive model, was initially
developed by Tianqi Chen during his Ph.D. research at the
University of Washington. Renowned for its capacity to
handle intricate and high-dimensional datasets, XGBoost
stands as a formidable machine learning algorithm. It
employs a gradient boosting framework that sequentially
builds decision trees to correct errors and improve model
performance. XGBoost's optimization strategy uses
gradient-based principles to minimize the loss function
and determine the optimal model configuration. It is
highly efficient in handling large-scale datasets through
distributed computing. XGBoost's acclaim comes from its
extreme optimization, regularization technique, and its
ability to deliver remarkable performance, precision, and
scalability in predictive modeling.
 F = { f1, f2, f3,f4, … … . fm } set of base learnes Final Prediction ŷ1 = ∑ ft (xi)m

t=1

During the training of machine learning models,

the selection of the function employed at each iteration
plays a vital role in minimizing the overall loss. Usually,
this function, often referred to as the loss function,
quantifies the disparity between the predicted and actual
outputs. The primary objective is to determine the model
parameters that minimize this function, thereby achieving
the optimal fit to the training data. The selection of an
appropriate optimization algorithm and loss function is
crucial, balancing computational efficiency, convergence
speed, and the ability to find the best solution. In the
mentioned gradient boosting algorithm, the value of ft(xi)
for each iteration is obtained by fitting a base learner to the
negative gradient of the loss function with respect to the
previous iteration's value. In XGBoost, various base
learners or functions are considered and the one that
minimizes the loss is selected.
 O = {x1,x2,x3,x4, … … . xn,}
 L<𝑡> = ∑ l(yi, ^yi<𝑡−1> + ft𝑛

𝑖=1 (𝑥𝑖)) + Ω(𝑓t)

 VOL. 18, NO. 13, JULY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1542

Figure-1. Conceptual framework for the proposed XG
boost model.

4.1 Creating Machine Learning Model

 Using XG Boost Algorithm

Within the realm of machine learning, diverse
data types necessitate specific processing techniques
tailored to their characteristics. Unstructured data, such as
textual or image-based information, finds optimal handling
through the utilization of neural networks. In contrast,
structured or tabular data, with its well-defined
organization, benefits from the superiority exhibited by
decision tree-based algorithms. To facilitate the creation of
machine learning models, the Python language offers the
sklearn library, which provides valuable support in this
domain. This encompassing library encompasses
functionalities that facilitate the division of data into

training and test sets, as well as the assessment of model
accuracy.

The provided Python code encompasses a
comprehensive approach for the successful execution of a
machine learning task. To effectively handle categorical
labels, a label encoder was employed, enabling the
conversion of such labels into a numerical format, thereby
facilitating further analysis. Furthermore, the features
underwent standardization using Standard Scaler, ensuring
the establishment of a consistent scale across the entirety
of the dataset. With a focus on robustness and reliability,
the dataset was partitioned into three distinct sets, namely
training, validation, and testing. The training set,
comprising 80% of the data, served as the foundation for
model training, while the remaining 20% was equally
distributed between the validation and testing sets. The
crux of the code lies within the training of an XGBoost
model, skilfully incorporating early stopping techniques to
mitigate the inherent risks of overfitting. Continuously
monitoring the model's performance on the validation set,
the training process would promptly halt if no
improvement was detected within a span of 20 consecutive
iterations. Subsequently, the model was subjected to
evaluation on the previously unseen testing set, utilizing
the optimal iteration ascertained through the application of
the early stopping mechanism. To holistically gauge the
model's performance, a multitude of metrics, including
accuracy, precision, recall, and F1-score, were
meticulously employed. These metrics, offering invaluable
insights into the model's predictive capabilities and its
aptitude to generalize to unseen data instances, provided a
comprehensive assessment. Additionally, a comprehensive
confusion matrix was constructed, enabling a meticulous
analysis of the classification outcomes, thus facilitating the
detailed examination of both accurate and erroneous
classifications for each distinct label. Following the
meticulous execution of the code, the evaluation metrics
were successfully obtained and subsequently presented
through the application of print statements. Furthermore,
the Python implementation code produced Table 3,
effectively showcasing the model's predictions based on
the data available within the "dt.csv" file. With an
impressive accuracy of 99.88%, the XGBoost model
emerged triumphant. Given that the purpose of this
particular XGBoost machine learning model was to test
the viability of the dataset extraction file for the creation
of numerous other machine learning models, the dataset
extraction file will be employed to create a random forest
classifier, among other high-accuracy models.

 VOL. 18, NO. 13, JULY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1543

Model Evaluation

 [0] validation-mlogloss:0.86206
 [1] validation-mlogloss:0.60043
 [2] validation-mlogloss:0.43065
 [3] validation-mlogloss:0.31345
 [4] validation-mlogloss:0.23015
 [5] validation-mlogloss:0.17005
 [6] validation-mlogloss:0.12624
 [7] validation-mlogloss:0.09418
 [8] validation-mlogloss:0.07063
 [9] validation-mlogloss:0.05326
 [10] validation-mlogloss:0.04041
 [11] validation-mlogloss:0.03092
 [12] validation-mlogloss:0.02390
 [13] validation-mlogloss:0.01871
 [14] validation-mlogloss:0.01488
 [15] validation-mlogloss:0.01203
 [16] validation-mlogloss:0.00992
 [17] validation-mlogloss:0.00835
 [18] validation-mlogloss:0.00718
 [19] validation-mlogloss:0.00632
 [20] validation-mlogloss:0.00567

[21] validation-mlogloss:0.00519
[22] validation-mlogloss:0.00484
[23] validation-mlogloss:0.00458
[24] validation-mlogloss:0.00438
[25] validation-mlogloss:0.00423
[26] validation-mlogloss:0.00412
[27] validation-mlogloss:0.00403
[28] validation-mlogloss:0.00397
[29] validation-mlogloss:0.00391
[30] validation-mlogloss:0.00388
[31] validation-mlogloss:0.00385
[32] validation-mlogloss:0.00384
[33] validation-mlogloss:0.00383
[34] validation-mlogloss:0.00381
[35] validation-mlogloss:0.00381
[36] validation-mlogloss:0.00380
[37] validation-mlogloss:0.00379
[38] validation-mlogloss:0.00379
[39] validation-mlogloss:0.00379
[40] validation-mlogloss:0.00379
[41] validation-mlogloss:0.00378

[42] validation-mlogloss:0.00378
[43] validation-mlogloss:0.00379
[44] validation-mlogloss:0.00380
[45] validation-mlogloss:0.00380
[46] validation-mlogloss:0.00381
[47] validation-mlogloss:0.00381
[48] validation-mlogloss:0.00382
[49] validation-mlogloss:0.00383
[50] validation-mlogloss:0.00384
[51] validation-mlogloss:0.00384
[52] validation-mlogloss:0.00385
[53] validation-mlogloss:0.00386
[54] validation-mlogloss:0.00387
[55] validation-mlogloss:0.00387
[56] validation-mlogloss:0.00388
[57] validation-mlogloss:0.00388
[58] validation-mlogloss:0.00389
[59] validation-mlogloss:0.00389
[60] validation-mlogloss:0.00390
[61] validation-mlogloss:0.00390

Table-3. Model evaluation.

Test Accuracy Precision Recall F1-Score

99.880% 1.00 1.00 1.00

4.2 Confusion Matrix Examination

Figure-2. Confusion matrix for XG boost.

 VOL. 18, NO. 13, JULY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1544

Figure-2 illustrates the confusion matrix for the
XG Boost classifier. Out of 2, 52,080 samples, 2, 51,778
were correctly classified, while 302 were misclassified.
The XG Boost algorithm achieved an accuracy of
99.88019676 %.

4.3 Classification Report Analysis

Figure-3. Confusion matrix for XG boost.

5. RESULTS AND DISCUSSIONS
The results produced from the present research

are useful for the aggregation of large datasets into single
data files and for to use of the data for creating machine
learning models. This work has overcome the usual limits
with regard to the number of records that can be placed
inside a dataset file. Shell scripting is a simple approach
and the tools are available in any Unix, Linux, or MacOS
operating systems. The shell scripting tools provided a
convenient set of commands to aggregate large amounts of
data in a single file. The shell command named sed
(stream editor) was useful in replacing human readable
descriptions with machine readable numeric values. It was
also used for removing the 8 header rows, which provided
captions for individual CSV files of the CIC dataset. The
approach for extraction and filtering of data described in
this paper is flexible and can be adapted for any other
research involving a huge volume of data (exceeding the
physical spreadsheet limit of 1, 048, 576 records). This
research identifies sed as the best filter for providing
numeric replacements for non-numeric data. In order to
ascertain whether spreadsheet applications can handle
such a huge amount of data or not, an attempt was made to
open the dataset file using a spreadsheet application. Error
messages were displayed as shown in Figures 2 and 3
since the data was too large for the spreadsheet
application.

Figure-4. Alert for dataset size.

 VOL. 18, NO. 13, JULY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1545

Figure-5. Alert for possible loss of accuracy.

The XGBoost classifier model showcased
outstanding classification capabilities, achieving an
extraordinary accuracy rate of 99.88%. It also
demonstrated impeccable precision, recall, and F1-Score
values. By implementing an early stopping mechanism,
the model effectively mitigated overfitting and ensured its
proficiency in generalizing to unseen instances. When
comparing different models, all of them displayed
commendable accuracy, perfect precision, recall, and F1-
Score values.

Figure-6. Comparison of Metrics.

6. CONCLUSIONS

The present research was aimed at creating a
single aggregate dataset file with a large volume of data
derived from the Canadian Institute of Cybersecurity
(CIC) dataset. The extraction and filtering were carried out
through shell scripting. Using the data extracted from the
CIC dataset, an XG Boost model was created and

successfully tested. Hence, it is found that the simple data
extraction and filtering tools provided in the standard
Unix/ Linux shell scripting environment are sufficient for
aggregation of data and making it useful for machine
learning algorithms.

REFERENCES

Ranjit Panigrahi, Samarjeet Borah. 2018. A detailed
analysis of CICIDS2017 dataset for designing Intrusion
Detection Systems. International Journal of Engineering &
Technology. 7(3.24): 479-482.

Mossa Ghurab, Ghaleb Gaphari, Faisal Alshami, Reem
Alshamy and Suad Othman. 2021. A Detailed Analysis of
Benchmark Datasets for Network Intrusion Detection
System. Asian Journal of Research in Computer Science.
7(4): 14-33, Article no.AJRCOS.66791 ISSN: 2581-8260

Senthilkumar S. P. and Arivarasan A. 2022. An efficient
intrusion detection system using machine learning models.
Journal of Northeastern University, 25(04), ISSN: 1005-
3026. Retrieved from https://dbdxxb.cn/.

Bhati B. S., Chugh G., Al-Turjman F., Bhati N. S. 2020.
An improved ensemble based intrusion detection
technique using XGBoost. Transactions on Emerging
Telecommunications Technologies. e4076. Retrieved from
wileyonlinelibrary.com/journal/ett. © 2020 John Wiley &
Sons, Ltd. doi: 10.1002/ett.4076.

Senthilkumar S. P., and Arivarasan, A. 2022. Random
Forest Classifier implementation of intrusion detection
system based on Canadian Institute of Cybersecurity (CIC)

https://dbdxxb.cn/

 VOL. 18, NO. 13, JULY 2023 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1546

dataset. Advanced Engineering Science. 54(02): 6437-
6443.

S. P. Senthilkumar and A. Arivarasan. 2022. Empirical
Analysis of Machine Learning Models towards Adaptive
Network Intrusion Detection Systems. 2022, 4th
International Conference on Smart Systems and Inventive
Technology (ICSSIT), Tirunelveli, India, pp. 192-200, doi:
10.1109/ICSSIT53264.2022.9716526.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
Scalable Tree Boosting System. ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA from August 13-17.

Yulianto A., Sukarno P., and Suwastika N. A. 2019.
Improving AdaBoost-based Intrusion Detection System
(IDS) Performance on CIC IDS 2017 Dataset. In the 2nd
International Conference on Data and Information Science
(pp. 012018). IOP Conf. Series: Journal of Physics: Conf.
Series 1192. IOP Publishing. doi:10.1088/1742-
6596/1192/1/012018.

Sukhpreet Singh Dhaliwal, Abdullah-Al Nahid and Robert
Abbas. Effective Intrusion Detection System Using
XGBoost. Information 2018, MDPI 9(7): 149;
https://doi.org/10.3390/info9070149

Siva Priya, Bipin Kumar Sahu, Badal Kumar, and Mayank
Yadav. 2019. Network Intrusion Detection System using
XG Boost. International Journal of Engineering and
Advanced Technology (IJEAT) ISSN: 2249-8958
(Online). 9(1).

Preethi Devan and Neelu Khare. 2020. An efficient
XGBoost–DNN-based classification model for network
intrusion detection system. Neural Computing and
Applications, 32, 12499-12514.
https://doi.org/10.1007/s00521-020-04708-x

Manish Khule and Neha Sharma. 2020. Anomaly
detection model based on SVM & XGBoost to detect
network intrusions. International Journal of Engineering in
Computer Science. 2(2): 07-10.

Badisa Naveen, Jayanth Krishna Grandhi, Kallam Lasya,
Eda Mokshita Reddy, Nulaka Srinivasu, and Suneetha
Bulla. 2022. Intrusion Detection System (IDS) using
Machine Learning Algorithms against Network Attacks.
Mathematical Statistician and Engineering Applications,
11081-11090, 71(4).

Why XGBoost? and Why is it so Powerful in Machine
Learning: https://abzooba.com/resources/blogs/why-
xgboost-and-why-is-it-so-powerful-in-machine-learning/

Code Implementation of XG Boost Model:
https://colab.research.google.com/drive/16Db2BJJjAqHyE
toN3k7dJrkXrkf1pNXx?usp=sharing

Enhanced CIC IDS 2017 Dataset:
https://drive.google.com/file/d/1WSeQ_rptpOklLydnFWA
hs-vou3pEi162/view?usp=sharing

https://doi.org/10.1007/s00521-020-04708-x
https://abzooba.com/resources/blogs/why-xgboost-and-why-is-it-so-powerful-in-machine-learning/
https://abzooba.com/resources/blogs/why-xgboost-and-why-is-it-so-powerful-in-machine-learning/
https://colab.research.google.com/drive/16Db2BJJjAqHyEtoN3k7dJrkXrkf1pNXx?usp=sharing
https://colab.research.google.com/drive/16Db2BJJjAqHyEtoN3k7dJrkXrkf1pNXx?usp=sharing
https://drive.google.com/file/d/1WSeQ_rptpOklLydnFWAhs-vou3pEi162/view?usp=sharing
https://drive.google.com/file/d/1WSeQ_rptpOklLydnFWAhs-vou3pEi162/view?usp=sharing

