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ABSTRACT 

Machine Learning has become the norm for creating models that predict and detect security breaches in computer 
systems. Modelling of machine learning systems requires a huge amount of data for training and testing the machine 
learning algorithm. The present research is concerned with preparing the data prior to feeding it to machine learning 
algorithms. The necessity for such preparation occurs due to the physical limitations of spreadsheet applications (with 
regard to the number of records they can handle). This research describes a simple shell scripting approach to combine, 
extract, and weed out unwanted records and finally prepare the data for feeding to machine learning algorithms. 
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1. INTRODUCTION 

The present research is concerned with creating a 
machine learning model for a dataset provided by the 
Canadian Institute of Cybersecurity (CIC, 
https://www.unb.ca/cic/) vide Intrusion Detection System 
(IDS) Dataset 2017, which is available for download 
through the page 
https://www.unb.ca/cic/datasets/index.html (after filling an 
information sheet about the persons downloading the 
dataset). The dataset has got 8 different files with a record 
count of around 2.7 million rows with 79 columns each. 
On combining the entire dataset into a single file, 
spreadsheet programs are inadequate to edit the dataset. 
Hence, it was decided to combine all the records and edit 
the above data using a shell script on Ubuntu Linux 
(available in the standard shell environment of any UNIX-
compliant system). The task was to rearrange the data in 
the proper format, assign numeric code to 14 types of 
attacks enlisted in the CIC dataset, and remove NaN (Not 
a Number) and Infinity values from the data table. The 
objective of the present research is to create a single data 
file containing all the records of the CIC dataset and to 
make it suitable for supervised machine learning through 
the substitution of numeric values for human-readable 
descriptions. The work was completed through several hit-
and-fail trial runs. 
 
2. RELATED STUDIES 

Ranjit Panigrahi et al. conducted a 
comprehensive analysis of the CICIDS2017 dataset from 
the CIC (Canadian Institute of Cybersecurity) to evaluate 
cybersecurity and assess detection and mitigation methods. 
They identified limitations in existing datasets that could 
introduce biases into traditional IDS detection systems. 
Their objective was to propose the development of a 
merged dataset to overcome these limitations and enhance 
classification and detection capabilities. The team 
emphasized the unique characteristics and challenges 

posed by the dataset during their analysis. [1] Mossa 
Ghurab et al. conducted a thorough study highlighting the 
importance of utilizing network-based datasets for 
evaluating intrusion detection methods. Their analysis 
encompassed several well-known datasets, ultimately 
recommending the use of contemporary datasets like 
CIDDS-001, CICIDS2017, and CSE-CIC-IDS2018 for 
assessing network intrusion detection systems (NIDS). 
This research emphasizes the significance of carefully 
selecting suitable datasets to ensure accurate performance 
evaluation of NIDS. [2] Senthilkumar S.P. et al. conducted 
a study on malicious intrusion attempts using the CIC IDS 
2017 dataset. They achieved high accuracy rates of 
99.853% and 89.789% with the Random Forest Classifier 
and Naive Bayes algorithms, respectively. The study 
emphasized the effectiveness of these supervised learning 
methods, with Naive Bayes demonstrating fast 
computational speed and the Random Forest Classifier 
surpassing previous research. [3] Bhoopesh Singh Bhati et 

al. propose an approach that integrates XGBoost with 
ensemble-based IDS to improve its performance. By 
effectively managing the bias-variance trade-off, the 
approach achieves an exceptional accuracy rate of 99.95% 
in detecting and preventing intrusions, as demonstrated 
through experiments with the KDDCup99 dataset. [4] 
Senthikumar S.P. et al. created a refined dataset from the 
CIC IDS 2017 dataset, consisting of 2.8 million records 
and 79 parameters. After removing unsuitable records, the 
dataset's integrity was ensured. Using the Random Forest 
Classifier (RFC), the analysis resulted in an impressive 
accuracy rate of 99.853%. [5] Senthilkumar S.P. et al. 
conducted a comprehensive survey on Intrusion Detection 
Systems (IDS) and evaluated different machine learning 
(ML) models. After a thorough comparison of their 
strengths and weaknesses, the RF Classifier method was 
identified as the most practical choice due to its superior 
accuracy. [6] In their work, Tianqi Chen et al. introduce 
XGBoost, an advanced tree boosting system renowned for 
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its exceptional scalability and performance. The authors 
devise a novel algorithm specifically tailored to efficiently 
handle sparse data, while also proposing a weighted 
quantile sketch method for approximate learning. They 
highlight the importance of cache access patterns, data 
compression, and sharding in constructing a machine 
learning system that can scale effectively. By integrating 
these insights, XGBoost showcases its remarkable 
capability to tackle real-world problems with minimal 
resource demands, marking a significant advancement in 
the field [7]. Yulianto et al. conducted a study aimed at 
improving the performance of AdaBoost-based Intrusion 
Detection Systems (IDS) using the CIC IDS 2017 Dataset. 
They employed advanced techniques, including SMOTE, 
PCA, and EFS. Experimental results showcased the 
superiority of their proposed method compared to a 
previous approach. The proposed approach achieved 
remarkable performance metrics, including high accuracy, 
precision, recall, and F1 Score. These findings provide 
substantial evidence of the effectiveness of the novel 
techniques in advancing intrusion detection capabilities 
[8]. XGBoost has been identified as a highly 
recommended classification method by Sukhpreet Singh 
Dhaliwal et al. after an extensive review of multiple 
studies. Its advantageous features, including adaptability 
across operating systems, superior accuracy, ability to 
handle diverse data inputs, provision of both linear model 
solver and tree algorithms, and successful deployment in 
industries for processing large volumes of data, have 
contributed to its widespread acceptance. XGBoost 
consistently delivers impressive results in various 
applications. [9] Sivapriya et al.  Present a novel intrusion 
detection system in their research paper. The system 
utilizes the XG Boost algorithm for detecting intrusions. 
The KDD-99 dataset is employed as input for 
implementing this approach. The findings of the study 

reveal that the intrusion detection system, which 
incorporates the XG Boost algorithm, outperforms other 
existing algorithms in terms of efficiency and accuracy. 
[10] Preethi Devan et al.  Introduced an XGBoost-DNN 
model that combines feature selection through XGBoost 
with deep neural networks for network intrusion 
classification. Their study demonstrated the model's 
superior performance when compared to existing shallow 
methods on the NSL-KDD dataset. The model utilizes the 
Adam optimizer, softmax classifier, and is implemented 
using Tensor Flow and Python. To validate its 
performance, cross-validation techniques were employed. 
Based on the obtained results, a deep learning model 
consistently achieves a classification accuracy of 97%, 
surpassing existing models. This model has a competitive 
advantage over others. The current study focuses on binary 
classification, but there is potential for future expansion to 
incorporate multiclass classification. [11] Manish Khule et 

al. assessed various machine learning algorithms and 
proposed the use of XGBoost, a technique that combines 
multiple learners, for Intrusion Detection Systems (IDS) 
using the NSL-KDD99 dataset. Comparative testing 
showed that XGBoost outperformed SVM in terms of 
accuracy, leading to its selection as the preferred 
algorithm. [12] Badisa Naveen et al. compared the 
performance of popular machine learning algorithms in an 
Intrusion Detection System (IDS) model. Gradient 
Boosting and XGBoost, belonging to the Boosting 
Algorithms Family, outperformed other algorithms, 
indicating their effectiveness for IDS. [13] 
 
3. SHELL SCRIPTING TO HANDLE LARGE CSV  

    DATA 

The data contained in the following 8 csv files 
attributed to the Canadian Institute of Cybersecurity was 
combined into a single file:  

 
Table-1. CIC IDS 2017 Dataset files. 

 

 
 

The total number of records in the CIC dataset 
was 2,830,743 (excluding header rows). The first objective 
was to combine all the dataset files into a single large file 
containing all the records to easily feed into the machine 
learning algorithm. The merger of files is an easy process 
with the help of the cat command. The header rows would 
be repeated at 8 different locations (representing the 
header row of each dataset file). The header row would be 
later removed using the sed command by substituting a 
blank value against the given row header.  

The data contained in the 8 csv files were 
merged, and numeric replacement values provided through 
the following script entered in the file datafilter.sh: 
#!/bin/sh 
cat *.csv | sed 's/ //g' | sed 's/BENIGN/1/' | sed 's/Bot/2/' | 
sed 's/DoSGoldenEye/3/' | sed 's/DoSHulk/4/' | sed 
's/DoSSlowhttptest/5/' | sed 's/DoSslowloris/6/' | sed 
's/FTP-Patator/7/' | sed 's/Heartbleed/8/' | sed 
's/Infiltration/9/' | sed 's/PortScan/10/' | sed 's/SSH-
Patator/11/' | sed 's/WebAttack-Brute Force/12/' | sed 
's/WebAttack-SqlInjection/13/' | sed 's/WebAttack-
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XSS/14/' | sed '/DestinationPort/d' | sed '/NaN/d' | sed 
'/Infinity/d'  > data.txt 
head -1 M*.csv | sed 's/ //g' > dt.txt && cat data.txt >> 
dt.txt 

The input values were mostly numeric. In some 
cases, the input values happened to be NaN or Infinity, 
which corresponded to Not a Number or Infinitely large 
value. The machine learning algorithms rejected the 
apparent text input values. The CSV files contained a total 
of 1,358 NaN values and 2,867 Infinity values. But the 
datafilter.sh script deleted all rows containing NaN or 
Infinity value. Supervised machine learning algorithms are 
limited to comprehending numeric values exclusively. The 
79th column of each row contained the classification of the 
attack type. Columns 1 to 78 were input parameters for 
machine learning and the 79th column is the prediction 
parameter. Table 1 depicts the 14 human readable 
classifications, the numeric replacement provided for the 
classifications, and the number of rows in which such 
replacements were found. 
 

Table-2. Attack types, numeric replacements and 
occurrence count. 

 

 
 

After filtering and preparing the data, the file 
dt.txt (which held the entire data) contained 2,827,876 
rows of data (excluding the header row). So many rows of 
data cannot be handled by any of the common spreadsheet 
application programs, which have a physical limit below 
half of the number of rows contained in the dt.txt file. 
Finally, the dt.txt file is renamed to dt.csv (to reflect the 
type of data it contains). 
 
4. XG BOOST 

Ensemble learning combines weak learners to 
improve performance by leveraging their collective 
strength. Bagging uses random sampling and aggregation 
of predictions to enhance decision-making. Boosting 
assigns higher weights to misclassified samples, 

transforming weak learners into proficient models. Both 
methods address limitations and improve accuracy. 
XGBoost, an ensemble additive model, was initially 
developed by Tianqi Chen during his Ph.D. research at the 
University of Washington. Renowned for its capacity to 
handle intricate and high-dimensional datasets, XGBoost 
stands as a formidable machine learning algorithm. It 
employs a gradient boosting framework that sequentially 
builds decision trees to correct errors and improve model 
performance. XGBoost's optimization strategy uses 
gradient-based principles to minimize the loss function 
and determine the optimal model configuration. It is 
highly efficient in handling large-scale datasets through 
distributed computing. XGBoost's acclaim comes from its 
extreme optimization, regularization technique, and its 
ability to deliver remarkable performance, precision, and 
scalability in predictive modeling. 
 F = { f1, f2, f3,f4, … … . fm }   set of base learnes Final Prediction ŷ1 = ∑ ft (xi)m

t=1  

 
During the training of machine learning models, 

the selection of the function employed at each iteration 
plays a vital role in minimizing the overall loss. Usually, 
this function, often referred to as the loss function, 
quantifies the disparity between the predicted and actual 
outputs. The primary objective is to determine the model 
parameters that minimize this function, thereby achieving 
the optimal fit to the training data. The selection of an 
appropriate optimization algorithm and loss function is 
crucial, balancing computational efficiency, convergence 
speed, and the ability to find the best solution. In the 
mentioned gradient boosting algorithm, the value of ft(xi) 
for each iteration is obtained by fitting a base learner to the 
negative gradient of the loss function with respect to the 
previous iteration's value. In XGBoost, various base 
learners or functions are considered and the one that 
minimizes the loss is selected. 
 O = {x1,x2,x3,x4, … … . xn,} 
  L<𝑡>  = ∑    l(yi, ^yi<𝑡−1>  + ft𝑛

𝑖=1 (𝑥𝑖  ))  +  Ω(𝑓t ) 
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Figure-1. Conceptual framework for the proposed XG 
boost model. 

 
4.1 Creating Machine Learning Model  

      Using XG Boost Algorithm 

Within the realm of machine learning, diverse 
data types necessitate specific processing techniques 
tailored to their characteristics. Unstructured data, such as 
textual or image-based information, finds optimal handling 
through the utilization of neural networks. In contrast, 
structured or tabular data, with its well-defined 
organization, benefits from the superiority exhibited by 
decision tree-based algorithms. To facilitate the creation of 
machine learning models, the Python language offers the 
sklearn library, which provides valuable support in this 
domain. This encompassing library encompasses 
functionalities that facilitate the division of data into 

training and test sets, as well as the assessment of model 
accuracy. 

The provided Python code encompasses a 
comprehensive approach for the successful execution of a 
machine learning task. To effectively handle categorical 
labels, a label encoder was employed, enabling the 
conversion of such labels into a numerical format, thereby 
facilitating further analysis. Furthermore, the features 
underwent standardization using Standard Scaler, ensuring 
the establishment of a consistent scale across the entirety 
of the dataset. With a focus on robustness and reliability, 
the dataset was partitioned into three distinct sets, namely 
training, validation, and testing. The training set, 
comprising 80% of the data, served as the foundation for 
model training, while the remaining 20% was equally 
distributed between the validation and testing sets. The 
crux of the code lies within the training of an XGBoost 
model, skilfully incorporating early stopping techniques to 
mitigate the inherent risks of overfitting. Continuously 
monitoring the model's performance on the validation set, 
the training process would promptly halt if no 
improvement was detected within a span of 20 consecutive 
iterations. Subsequently, the model was subjected to 
evaluation on the previously unseen testing set, utilizing 
the optimal iteration ascertained through the application of 
the early stopping mechanism. To holistically gauge the 
model's performance, a multitude of metrics, including 
accuracy, precision, recall, and F1-score, were 
meticulously employed. These metrics, offering invaluable 
insights into the model's predictive capabilities and its 
aptitude to generalize to unseen data instances, provided a 
comprehensive assessment. Additionally, a comprehensive 
confusion matrix was constructed, enabling a meticulous 
analysis of the classification outcomes, thus facilitating the 
detailed examination of both accurate and erroneous 
classifications for each distinct label. Following the 
meticulous execution of the code, the evaluation metrics 
were successfully obtained and subsequently presented 
through the application of print statements. Furthermore, 
the Python implementation code produced Table 3, 
effectively showcasing the model's predictions based on 
the data available within the "dt.csv" file. With an 
impressive accuracy of 99.88%, the XGBoost model 
emerged triumphant. Given that the purpose of this 
particular XGBoost machine learning model was to test 
the viability of the dataset extraction file for the creation 
of numerous other machine learning models, the dataset 
extraction file will be employed to create a random forest 
classifier, among other high-accuracy models. 
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Model Evaluation 

         [0] validation-mlogloss:0.86206 
         [1] validation-mlogloss:0.60043 
         [2] validation-mlogloss:0.43065 
         [3] validation-mlogloss:0.31345 
         [4] validation-mlogloss:0.23015 
         [5] validation-mlogloss:0.17005 
         [6] validation-mlogloss:0.12624 
         [7] validation-mlogloss:0.09418 
         [8] validation-mlogloss:0.07063 
         [9] validation-mlogloss:0.05326 
       [10] validation-mlogloss:0.04041 
       [11] validation-mlogloss:0.03092 
       [12] validation-mlogloss:0.02390 
       [13] validation-mlogloss:0.01871 
       [14] validation-mlogloss:0.01488 
       [15] validation-mlogloss:0.01203 
       [16] validation-mlogloss:0.00992 
       [17] validation-mlogloss:0.00835 
       [18] validation-mlogloss:0.00718 
       [19] validation-mlogloss:0.00632 
       [20] validation-mlogloss:0.00567 

[21] validation-mlogloss:0.00519 
[22] validation-mlogloss:0.00484 
[23] validation-mlogloss:0.00458 
[24] validation-mlogloss:0.00438 
[25] validation-mlogloss:0.00423 
[26] validation-mlogloss:0.00412 
[27] validation-mlogloss:0.00403 
[28] validation-mlogloss:0.00397 
[29] validation-mlogloss:0.00391 
[30] validation-mlogloss:0.00388 
[31] validation-mlogloss:0.00385 
[32] validation-mlogloss:0.00384 
[33] validation-mlogloss:0.00383 
[34] validation-mlogloss:0.00381 
[35] validation-mlogloss:0.00381 
[36] validation-mlogloss:0.00380 
[37] validation-mlogloss:0.00379 
[38] validation-mlogloss:0.00379 
[39] validation-mlogloss:0.00379 
[40] validation-mlogloss:0.00379 
[41] validation-mlogloss:0.00378 

[42] validation-mlogloss:0.00378 
[43] validation-mlogloss:0.00379 
[44] validation-mlogloss:0.00380 
[45] validation-mlogloss:0.00380 
[46] validation-mlogloss:0.00381 
[47] validation-mlogloss:0.00381 
[48] validation-mlogloss:0.00382 
[49] validation-mlogloss:0.00383 
[50] validation-mlogloss:0.00384 
[51] validation-mlogloss:0.00384 
[52] validation-mlogloss:0.00385 
[53] validation-mlogloss:0.00386 
[54] validation-mlogloss:0.00387 
[55] validation-mlogloss:0.00387 
[56] validation-mlogloss:0.00388 
[57] validation-mlogloss:0.00388 
[58] validation-mlogloss:0.00389 
[59] validation-mlogloss:0.00389 
[60] validation-mlogloss:0.00390 
[61] validation-mlogloss:0.00390 

 
Table-3. Model evaluation. 

 

Test Accuracy Precision Recall F1-Score 

99.880% 1.00 1.00 1.00 

 
4.2 Confusion Matrix Examination 

 

 
 

Figure-2. Confusion matrix for XG boost. 
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Figure-2 illustrates the confusion matrix for the 
XG Boost classifier. Out of 2, 52,080 samples, 2, 51,778 
were correctly classified, while 302 were misclassified. 
The XG Boost algorithm achieved an accuracy of 
99.88019676 %. 
 
4.3 Classification Report Analysis 
 

 
 

Figure-3. Confusion matrix for XG boost. 
 
 
 

5. RESULTS AND DISCUSSIONS 
The results produced from the present research 

are useful for the aggregation of large datasets into single 
data files and for to use of the data for creating machine 
learning models. This work has overcome the usual limits 
with regard to the number of records that can be placed 
inside a dataset file. Shell scripting is a simple approach 
and the tools are available in any Unix, Linux, or MacOS 
operating systems. The shell scripting tools provided a 
convenient set of commands to aggregate large amounts of 
data in a single file. The shell command named sed 
(stream editor) was useful in replacing human readable 
descriptions with machine readable numeric values. It was 
also used for removing the 8 header rows, which provided 
captions for individual CSV files of the CIC dataset.  The 
approach for extraction and filtering of data described in 
this paper is flexible and can be adapted for any other 
research involving a huge volume of data (exceeding the 
physical spreadsheet limit of 1, 048, 576 records). This 
research identifies sed as the best filter for providing 
numeric replacements for non-numeric data. In order to 
ascertain whether spreadsheet applications can handle 
such a huge amount of data or not, an attempt was made to 
open the dataset file using a spreadsheet application. Error 
messages were displayed as shown in Figures 2 and 3 
since the data was too large for the spreadsheet 
application. 

 
 

Figure-4. Alert for dataset size. 
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Figure-5. Alert for possible loss of accuracy. 
 

The XGBoost classifier model showcased 
outstanding classification capabilities, achieving an 
extraordinary accuracy rate of 99.88%. It also 
demonstrated impeccable precision, recall, and F1-Score 
values. By implementing an early stopping mechanism, 
the model effectively mitigated overfitting and ensured its 
proficiency in generalizing to unseen instances. When 
comparing different models, all of them displayed 
commendable accuracy, perfect precision, recall, and F1-
Score values. 
 

 
 

Figure-6. Comparison of Metrics. 
 
6. CONCLUSIONS 

The present research was aimed at creating a 
single aggregate dataset file with a large volume of data 
derived from the Canadian Institute of Cybersecurity 
(CIC) dataset. The extraction and filtering were carried out 
through shell scripting. Using the data extracted from the 
CIC dataset, an XG Boost model was created and 

successfully tested. Hence, it is found that the simple data 
extraction and filtering tools provided in the standard 
Unix/ Linux shell scripting environment are sufficient for 
aggregation of data and making it useful for machine 
learning algorithms. 
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