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ABSTRACT 

As the exact solution of lateral torsional buckling of elastic prismatic beams is practically limited to the simple 

case of simply supported beams under equal end moments, other loading conditions and boundary conditions require more 

practical solutions to the problem.  As the general solution of lateral torsional buckling of unsymmetric beams is a function 

of the sign of the bending moment along the axis of the beam, i.e. location of the shear center concerning the compression 

zone of the cross section, application of the current traditional empirical expressions such as coefficient of the moment, Cb, 

becomes highly inconsistent and unwarranted to capture the correct critical moment as acknowledged by the American 

Institute of Steel Construction, AISC. The finite element method, FEM, offers a feasible alternative to overcome these 

shortcomings. FEM is formulated in its simplest form of linear elements for the general case of lateral torsional buckling of 

unsymmetric cross sections. Finite element development shows that the characteristic equation is of the nonlinear quadratic 

eigenvalue problem type. Using the classical polynomial shape functions for beams, FEM proves to be extremely accurate 

and can overcome the high inconsistencies and discrepancies embedded in the application of the classical methods.  

 
Keywords:  finite element method, lateral torsional buckling of unsymmetric beams. 

 
Manuscript Received 6 July 2023; Revised 19 October 2023; Published 8 November 2023 

 

INTRODUCTION 

Lateral torsional buckling of beams is one of the 

cumbersome problems that face engineers.  In general, 

lateral torsional buckling can be classified into two 

categories, first, beams with sections symmetric about 

their major axis and at the same time bent about this major 

axis, and second, unsymmetric beams or monosymmetic 

beams about their minor axis and bent about their major 

axis; the other axis of symmetry (Galambus, 1968). 

Due to the length of treatment of both categories, 

symmetric and asymmetric, the first class of beams, i.e. 

symmetric beams, were treated in a previous paper 

(Armouti, 2022). This paper will address the second class 

of beams, i.e. unsymmetric beams 

Many analytical and experimental studies have 

been conducted to tackle the problem of lateral torsional 

buckling, LTB, of unsymmetric beams. LTB of 

unsymmetric beams is considered a 3D problem and is 

usually treated with the 3D finite element method, FEM, 

using shell elements. Other analytical methods exist, such 

as energy and numerical methods, however, they are 

considered cumbersome and not suited for practical 

applications. For example, (Hauksoon, 2014) explored 

some of the popular commercial software programs he 

discussed their advantages, shortcomings, and limitations 

especially when it comes to unsymmetric cross sections. 

(Piotrowski, 2015) studied LTB of monosymmetric I-

beams with warping restraint at supports using energy 

methods, and then compared with the results of 3D 

volumetric elements. (Asgarian, 2011) studied LTB of 

non-prismatic unsymmetric I-beams using the total 

potential energy method, and then compared the results 

with 3D shell elements. 3D shell elements are also used to 

study the LTB of T-beams with opening (Ahmad, 2021). 

In addition, experimental and numerical analysis are used 

to study the LTB of monosymmetric and unsymmetric 

sections (Bajer et al. 2017), and experimental and 

numerical analysis are also used to study the LTB of 

beams with selected cross-sections (Barnat et al. 2017). 

The exact solution of the lateral torsional 

buckling problem exists for the simple case of the simply 

supported beam under an equal end moment.  Other 

support conditions and loading schemes are treated mainly 

by empirical methods.  Over the years, the American 

Institute of Steel Construction (AISC) (AISC, 2017) 

provided empirical equations and some coefficient of 

moment to treat some selected cases. However, in Sec. 

F12 of its commentary, the AISC code calls for more 

practical and realistic methods to treat the general case of 

lateral torsional buckling of unsymmetric beams.  Within 

this context, the finite element method offers an attractive 

and practical solution to this problem. 

The differential equation of lateral torsional 

buckling for unsymmetric beams is obtained by second-

order analysis (Galambus, 1968), which is given in the 

following form 

 

iv

wEC  - {GJ + Mo x }  '' - 
o

y

M

EI


   = 0 

where 

E  = Young modulus. 

G  = Shear modulus. 

Cw  = Warping constant, also known as warping 

moment of inertia, (m
6
). 

J  = Saint Venant torsional constant, (m
4
). 
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Iy  = Moment of inertial of the cross-section about 

the weak axis, y, (m
4
). 

x  = Coefficient of monosymmetry of the cross-

section which reflects its unsymmetry as will be 

defined in the following paragraphs, (m). 

Mo  = Externally applied equal end moment in the 

presence of, x, as shown in Figure-1.  

  = Twisting angle of the cross section about the z-

axis as shown in Figure-1, (rad) 

'', 
iv

  = Second and four derivative of, , with respect 

to the axis, z. 

z  = Centroidal axis 

Within this context, bracing conditions will be 

identified as follows: 

 

 Simple brace: a brace that provides restriction of the 

rotation angle, but permits warping at the section 

under consideration, i.e.  = 0, ' ≠ 0. 
 Fixed brace: a brace that provides restriction for both 

rotation and warping of the section under 

consideration, i.e.  = 0, ' = 0. 

 

 
 

Figure-1. Simply supported beam under equal end 

moments, free to warp, and braced against rotation 

at supports. 

 

The exact solution for the case of the simply 

supported beam under equal end moments, free to warp, 

and laterally braced against rotation at the supports, as 

shown in Figure 1, is given in the following form 

(Galambus, 1968) 

 

2

 2 wx x
o cr y

 2 y
y

ECβ β π GJ
M =  ( )  EI       ±       +   +  

 π 2 2 EI
( )  EI



  
    

   
     

   

 

where,  x = 
2 2

s

x

 y (x + y ) dA
- 2y

I

 
 
 

 

x, y  = Major and minor principal axes. 

ys  = y-coordinate of the shear center concerning the 

principal axes, x, and y. 

with the following sign convention 

 x  = +ve when the shear center lies in the 

compression zone of the cross section. 

 x  = -ve when the shear center lies in the tension 

zone of the cross section. 

 

It is worth mentioning that the above expression 

includes two unequal solutions which can be shown that 

the results depend on the sign of,  x. If the critical moment 

of symmetric sections is considered a reference, i.e.  x, is 

taken zero, then the unsymmetric section solution will be 

higher than, Mocr, when,  x, is positive; and will be lower 

than, Mocr, when, x, is negative. In other words, the 

lateral torsion buckling of unsymmetric beams depends on 

the direction of the moment concerning the location of the 

shear center, whereas it is independent of the direction of 

the moment in the case of symmetric cross sections. 

 

FINITE ELEMENT FORMULATION 

To obtain the finite element solution of this 

problem, the Galerkin method of finite element 

formulation, which operates directly on the differential 

equation, offers an attractive approach to accomplish this 

task (Huebner and Thornton). A quick review of the 

Galerkin Method reminds us that an approximate function 

of the solution (shape functions) can be assumed, and then 

minimization of the error by weighted residuals yields the 

required results.  It is well documented that the weighted 

residuals in the Galerkin method are taken as the shape 

functions themselves. 

Accordingly, for the differential equation 

presented earlier, the twisting angle, (z), may be 

approximated as,  (z), which can be expressed in terms 

of shape functions as follows 

 

 (z) =  j j (z) j 

where 

 (z)  = approximate continuous function of field 

twisting angle. 

j (z)  = continuous shape function of field twisting 

angle, . 

j  = nodal twisting angle. 

 

If a function, f(z), is defined such as  

f(z) = iv

wEC  -  (GJ + Mo x)  '' - 
o

y

M

EI


   = 0 

And if the approximate function,  (z), is used 

instead of the exact function, (z), then, f(z), becomes an 

approximate function, which does not vanish but yields a 

residual value, or an error due to the approximation, i.e. 

f (z) =  
iv

wEC  - (GJ + Mo x)  '' - 
o

y

M

EI


   ≠ 0 = 

residual value 

Consequently, there will be an error in the 

solution equal to the difference between the approximate 

and exact solution, i.e. 
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error =  f (z)  - f(z)  = f (z)  - 0 = f (z)  

 

The weighted residuals method states that the 

summation of the error components multiplied by their 

weights is set to zero.  Galerkin contribution to this 

method was to consider the weights to be the shape 

functions themselves, hence, the integrated weighted 

residuals become  

 

  error. weight .dz = 0 

 

or,   ( iv

wEC  -  (GJ + Mo x)   '' - 
o

y

M

EI


   ) . i dz = 0       

Substitution of,  (z) =  j j (z) j, in the above 

expression yields 

j
Σ    (

wEC j 
iv
 j - GJ j '' j - Mo x j '' j - 

o

y

M

EI


 j j  

) . i dz = 0        

or, 
j

Σ    (
wEC j 

iv
 ij - GJ j '' ij - Mo x j '' ij - 

o

y

M

EI




j ij ) . dz = 0       

By integration by parts, the above integrals can 

be converted into symmetric integrals which yields the 

following expression 

j
Σ    ( 

wEC i'' j''j + GJ i' j' j  + Mo x i' j' j - 

o

y

M

EI




i jj ) . dz = 0  …  i = 1, 2, 3, 4 

Note that the highest derivative in the integrals 

above is a second derivative, and hence, the shape 

functions must maintain continuity at the nodes up to the 

first derivative, i.e. '. Consequently, the beam needs four 

Degrees Of Freedom (DOFs) to satisfy this continuity 

requirement, namely, the twisting angle and its first 

derivative at each node of the beam.  Note also that these 

four DOFs require four shape functions.  For beams, the 

popular four polynomial shape functions shown in Figure-

2 are ideal for this development. 

The integration of the expression given above 

yields the corresponding 4x4 element matrices which may 

be identified and given within this context as follows: 

 

1. Element warping stiffness matrix, [Cwe], where 

Cwe ij =  wEC i'' j'' dz 

 

or, 

2 2

w

we 3

2 2

12 6L -12 6L

6L 4L -6L 2LEC
[C ] =

-12 -6L 12 -6LL

6L 2L -6L 4L

 
 
 
 
 
 

 

 

 
 

Figure-2. Popular polynomial shape functions used for 

beam formulation. 

 

2. Element Saint Venant stiffness matrix, [Je], 

where Je ij =   GJ i' j' dz 

 

or, 

2 2

e

2 2

36 3L -36 3L

3L 4L -3L -LGJ
[J ] =  

-36 -3L 36 -3L30L

3L -L -3L 4L

 
 
 
 
 
 

 

 

3. Element coefficient of monosymmetry matrix, 

[xe], where xe ij =   x i' j' dz 

 

or, 

2 2

x

xe

2 2

36 3L -36 3L

3L 4L -3L -L
[ ] =  

-36 -3L 36 -3L30L

3L -L -3L 4L

 
   
 
 
 

 

4. Element lateral stiffness matrix, [Iy], where Iy ij 

=   
y

1  

EI
i jdz 

or, 

2 2

ye

y

2 2

156 22L 54 -13L

22L 4L 13L -3LL
[I ] =  

54 13L 156 -22L420 EI

-13L -3L -22L 4L

 
 
 
 
 
 

 

 

As pointed out earlier, continuity requirements 

result in four nodal DOFs with 2DOFs at each end.  

Figure-3 shows the resulting arrangement of these local 

(element) DOFs as related to the above element matrices. 

In this paper, the rotation angle will be represented by a 

curve with a single arrow head whereas the curvature is 

represented by a curve with double arrow heads as shown 

in Figure-3. Using the vector {U} to represent the local 

(element) DOFs, the {U} vector appears as follows  

 

1

2

3

4

u

u
{U =  

u

u

 
 
   
 
  

, which correspondent to, 

i

i

element

j

j

'
{ =  

'

 
     
  

, 

as shown in Figure-3. 
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Figure-3. Definition of element Degrees of Freedom 

of beams in terms of twisting angle,  
 

Accordingly, the element local matrices take the 

form 

 

[Cwe] {U},    [Je] {U},    [xe]{U},   [Iye] {U} 

 

Recall that curvature is defined as the rate of 

change of rotation concerning length, and hence, ', may 

be viewed as the twisting curvature which is resulting 

from the effect of warping integral in this case. Note that 

this twisting curvature appears in this formulation as a new 

and additional DOF to the beam which becomes the so-

called the seventh DOF of the beam modeling the effect of 

warping in the section. 

Given the above, and after constructing the 

counterpart global matrices by a standard assembly 

process, the finite element formulation may be 

symbolically presented in a matrix form.  Using the vector 

{D} to represent the global DOFs, and for several DOFs 

equal to, N, the final matrix formulation is given as 

follows 

 

[Cw] {D} + [J ] {D} + Mo [x] {D} - Mo 
2
 [ Iy] {D} = 

{0} 

or, { [Cw] + [J ] + Mo [x] - Mo 
2
 [ Iy] } {D} = {0} 

 

or, {[ [Cw] + [J ]] + Mo [x] - Mo 
2
 [Iy] } {D} = {0} 

 

where 

[Cw]  = Global warping stiffness matrix size NxN. 

[J]  = Global Saint Venant stiffness matrix size NxN. 

[x]  = Global coefficient of monosymmetry matrix 

size NxN. 

[ Iy]  = Global lateral torsional geometric stiffness 

matrix size NxN. 

Mo  = Lateral torsional moments with numbers equal 

to N. 

{D}  = Global nodal vector size Nx1 as defined 

previously. 

= {d1 d2 d3 … dN}
T
  

 

The resulting equation above is a quadratic 

eigenvalue problem which might be presented in the 

following form 

 

{[K] +  [C] -  [M]} {} = {0} 
 

The above lateral torsional buckling matrices 

represent a set of homogeneous linear algebraic equations 

with a size equal to N and hence represent the 

characteristic equation of the lateral torsional buckling 

moments. Note that, unlike the case of symmetric cross 

sections which yields a generalized eigenvalue problem, 

the unsymmetric cross section case yields a nonlinear 

quadratic eigenvalue problem form.   

Note that the quadratic eigenvalue problem is 

different from the standard eigenvalue problem as it 

contains two expressions of the unknown eigenvalue, , 

raised to the first power and to the second power as 

shown. Accordingly, the standard eigenvalue solution 

cannot be used in this case and hence the solution may be 

obtained by other methods (Tisseur and Meerbergen, 

2001). In this paper, successive iteration procedures are 

implemented to find each of the eigenvalues that make the 

resulting determinant value equal to zero, and then the 

correspondent eigenvector is obtained by solving the 

resulting system of linear algebraic equations for a 

selected relative value for one element of the eigenvector 

column (chosen to be, 1, for element No. 1, as will be 

shown later). Such a solution yields an, N, lateral torsional 

buckling moment and an, N, corresponding mode shape. 

 

FINITE ELEMENT APPLICATION AND 

VERIFICATION 

The application procedures and verification of 

this method will be demonstrated by considering the beam 

shown in Figure-4. Using middle line dimensions, the 

relevant section properties are calculated as shown in 

Table-1. 

 

 
 

Figure-4. I-beam layout and boundary conditions, simple supports with simple  

braces, i.e. = 0,  ' ≠ 0. 
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Table-1. I-beam section properties calculations. 
 

 Equation 

expression 

Arithmetic 

detail 

Section 

property value 

Stiffness 

value 

Flanges moment 

of inertia, I f

I f 1 = 

3
f 1 f 1t  b

12
 

320 (200)

12
 13.333 x10

6
 ----- 

I f 2 = 

3
f 2 f 2t  b

12
 

320 (150)

12
 5.625 x10

6
 ----- 

Warping 

constant, Cw 

f1 f 22
o

f1 f 2

 I   I
h  

 I  +  I
 (400)

2
 

613.333  (5.625 )
 x10

13.333 + 5.625
 

Cw = 

632.962 x10
9
 

mm
6
 

ECw = 

126.592 

kN.m
4
 

Torsional 

Constant, J 

3 b t

3
  

3 3 3200 (20) 150 (20) 400 (10)
+  +

3 3 3
 

J = 1.067 x10
6
 

mm
4
 

GJ = 

82.133 

kN.m
2
 

Coefficient of 

monosymmetry, 

x 

By integration See text body for details * 
153 mm 

(0.153 m) 
----- 

Transverse 

moment of 

inertia, Iy 
f iI  13.333 x10

6
 + 5.625 x10

6
 

Iy = 18.958 

x10
6
 mm

4
 

EIy = 

3,791.667 

kN.m
2
 

 

* x  = 
2 2

s

x

 y (x + y ) dA
- 2y

I

 
 
 

 As  x calculations 

are rather cumbersome, the intermediate results 

are given here concerning Figure 4 as follows: 

 

ys  = y-coordinate of the shear center which may be 

obtained by classical procedures of shear center 

calculations to yield, ys = -63.137 mm. 

Ix  = the moment of inertial of the entire cross 

section about the major, x-axis, which may be 

obtained by standard procedures to yield, Ix = 

329,696,970 mm
4
. 

 

The integration above may be carried over the 

three components of the cross section separately, namely, 

top flange, web, and bottom flange to yield the following 

result,  

 

Top flange  2 y x  dA = -2.424x10
9
, 3 y  dA = -

24.042x10
9
  

Web  2 y x  dA = 0, 3 y  dA = 2.933x10
9
  

Bottom flange  2 y x  dA = 1.227x10
9
, 3 y  dA = 

31.160x10
9
  

Knowing the above quantities,  x, can now be 

calculated as follows: 

 

 x = 
2 2

s

x

 y (x + y ) dA
- 2y

I

 
 
 

 = 153 mm.   

Recall that the sign of,  x, depends on the 

location of the shear center concerning the compression 

zone which is taken positive if the shear center lies in the 

compression zone, and negative if the shear center lies in 

the tension zone of the cross section. 

This beam is simply supported, simply braced, 

and subjected to equal end moments which put the shear 

center in the compression zone, hence, x, is taken equal to 

+0.153 m. The exact solution of this case is presented in 

the introduction; therefore, the exact critical lateral 

torsional moment in presence of the  x-coefficient, Mo+, 

is given as follows: 

 

2

 2 wx x
o cr y

 2 y
y

ECβ β π GJ
M =  ( )  EI       ±       +   +  

 π 2 2 EI
( )  EI



  
    

   
     

   

  

 

2

 2
o cr

 2

 π 0.153 0.153 82.133 126.592
M =  ( )  (3,791.667)     ±     +    +  

 π 10 2 2 3,791.667
( )  (3,791.667)
10



  
    

   
        

 

+ 218.973
=  

 - 161.717

 
 
 

 kN.m 
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Note that the solution yields two answers, a 

positive moment which puts the shear center in the 

compression zone, and a negative moment which puts the 

shear center in the tension zone. It should be pointed out 

that if the coefficient of monosymmetry, x, is taken 

negative, an inspection of the above expression indicates 

that the answers will be (+161.717 and -218.973) which 

means that the answer will be the same with switched 

signs. This conclusion indicates that the correct critical 

moment depends on the location of the shear center 

concerning the compression zone in the section. This 

result also indicates that the higher critical moment takes 

place when the shear center lies in the compression zone, 

whereas the smaller critical moment takes place when the 

shear center lies in the tension zone. 

In this paper, and for clarity of presentation, the 

critical buckling moment for the standard case of equal 

end moments applied to a simply supported beam with a 

uniform cross section will be referred to by the following 

designation according to the presence of shear center 

concerning the compression zone 
 

Mo+cr  = Critical buckling moment when,x is positive, 

i.e. shear center in the compression zone. 

Mocr  = Critical buckling moment when,x is negative, 

i.e. shear center in the tension zone. 

Mocr  = Critical buckling moment regardless of the sign 

of,x, whether positive or negative. 
 

The FEM solution is obtained by standard 

procedures.  In this section, a demonstration of the 

procedures will be presented using two identical elements 

as shown in Figure-5. Since the supports provide a simple 

brace, i.e.  = 0,  ' ≠ 0, the beam will have four global 
DOFs, namely, two twisting curvatures at the supports, i.e. 

at Nodes 1 and 2, and one rotation, one twisting curvature 

at midspan, i.e. at Node 2 as shown in Figure-5. 

The procedures of application will include the 

solution of both cases of coefficient of monosymmetry, x, 

i.e. a case of positive, x, and a case of negative, x, as 

follows: 
 

 
 

Figure-5. Beam discretization into two equal elements. 

Case 1: x = +153 mm: 

Element matrices: 

Note that since the two elements are identical, the 

element matrices will be the same for both of them. Using 

kN, and m units, the matrices are calculated as follows: 

 

[Cwe1] = [Cwe2] = 

2 2

w

we 3

2 2

12 6L -12 6L

6L 4L -6L 2LEC
[C ] =

-12 -6L 12 -6LL

6L 2L -6L 4L

 
 
 
 
 
 

 = 

12.153 30.383 -12.153 30.383

30.383 101.275 -30.383 50.638

-12.153 -30.383 12.153 -30.383

30.383 50.638 -30.383 101.275

 
 
 
 
 
 

 

 

[Je1] = [Je2] = 

2 2

e

2 2

36 3L -36 3L

3L 4L -3L -LGJ
[J ] =  

-36 -3L 36 -3L30L

3L -L -3L 4L

 
 
 
 
 
 

 = 

19.712 8.213 -19.712 8.213

8.213 54.755 -8.213 -13.689

-19.712 -8.213 19.712 -8.213

8.213 -13.689 -8.213 54.755

 
 
 
 
 
 

 

       

[xe1] = [xe 2] = 

2 2

x

xe

2 2

36 3L -36 3L

3L 4L -3L -L
[ ] =  

-36 -3L 36 -3L30 L

3L -L -3L 4L

 
   
 
 
 

 = 

0.037 0.015 -0.037 0.015

0.015 0.102 -0.015 -0.026

-0.037 -0.015 0.037 -0.015

0.015 -0.026 -0.015 0.102

 
 
 
 
 
 

 

 

[Iye1] = [Iye2] = 

2 2

ye

y

2 2

156 22L 54 -13L

22L 4L 13L -3LL
[I ] =  

54 13L 156 -22L420 EI

-13L -3L -22L 4L

 
 
 
 
 
 

 = 

6

490 345 170 -204

345 314 204 -235
10

170 204 490 -345

-204 -235 -345 314



 
 
 
 
 
 

 

 

Assembly of the global matrices, [Kg], in terms of 

the global 4DOFs, d1, d2, d3, d4, can be carried out from 
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the element matrices, [ke], using the following expression 

(Chen and Lui, 1987) 

[Kg] =  [T]
T
 [ke] [T]… summation is carried out 

over all elements 

where, [T], is known as the kinematic (compatibility) 

matrix which relates the global nodal deformations {D} to 

element nodal deformations {U}.  Accordingly, the [T] 

matrices for elements, 1 and 2, are constructed as follows: 

 

[T1]
T
 =  

1 2 3 4

1

2

3

4

     

0   0  0

0  0  0
 

0  0   0

0  0   

 u u

0  0

u u

d

d

d

d

 1

  1

 1

 
 
 
 
 
 

  ,     [T2]
T
 =  

1 2 3 4

1

2

3

4

     

0   0   0  0

 0   0  0
 

0   0   0

0  0   0

1 

  1

 

 u u u u

d

d

d

d 1

 
 
 
 
 
 

 

 

Carrying out the above summation leads to 

 

[Cw] global =  [Ti]
T
 [Cwe,i] [Ti] = 

101.275 -30.383 50.638 0

-30.383 24.306 0 30.383

50.638 0 202.550 50.638

0 30.383 50.638 101.275

 
 
 
 
 
 

 

 

[J]global =  [Ti]
T
 [J,i] [Ti] = 

54.755 -8.213 -13.689 0

-8.213 39.424 0 8.213

-13.689 0 109.511 -13.689

0 8.213 -13.689 54.755

 
 
 
 
 
 

 

 

[x] global =  [Ti]
T
 [x,i] [Ti] =  

0.102 -0.015 -0.026 0

-0.015 0.073 0 0.015

-0.026 0 0.204 -0.026

0 0.015 -0.026 0.102

 
 
 
 
 
 

 

 

[Iy] global =  [Ti]
T
 [Iy,i] [Ti] =  

6

314 204 -235 0

204 980 0 -204
10

-235 0 628 -235

0 -204 -235 314



 
 
 
 
 
 

 

 

Characteristic equation:  

{ [ [Cw] + [J ] ] + Mo [x] - Mo 
2
 [ Iy] } {D} = {0} 

 

156.031 -38.596 36.949 0

-38.596 63.730 0 38.596

36.949 0 312.061 36.949

0 38.596 36.949 156.031

 
 
 
 
 
 








 + Mo 

0.102 -0.015 -0.026 0

-0.015 0.073 0 0.015

-0.026 0 0.204 -0.026

0 0.015 -0.026 0.102

 
 
 
 
 
 

 

- Mo 
2
 

6

314 204 -235 0

204 980 0 -204
10

-235 0 628 -235

0 -204 -235 314



 
 
 
 
 
 

1

2

3

4

d

d

d

d

 
 
 
 
 
  

 = 

0

0

0

0

 
 
 
 
 
  

 

 

The solution of the above quadratic eigenvalue 

equation is obtained by successive iterations which yields 

four moments, { Mo }, and four mode shapes, [], as 

follows: 

{Mo} = 

219.108

596

1, 248

2,129

 
 
 
 
 
  

, [  ]  = 1 2 3 4       = 

1 1 1 1

3.167 0 0.548 0

0 1 0 1

1 1 1 1

 
  
 
 
  

 

 

Graphical presentation of the mode shapes are 

also shown in Figure-6 (a and b). The critical lateral 

torsional buckling moment is, of course, the smallest of 

the four moments which is given as follows: 

 

Mocr = 219.108 kN.m     … vs … exact = 218.973 kN.m 
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Figure-6. Buckling moments and their mode shapes. 

 

As well-known and documented, the accuracy of 

the FEM solution depends on the size of the mesh (number 

of elements) in this case.  To examine the effect of the 

mesh size on the accuracy of this solution, the above 

procedures are repeated for, 1, 2, 3, 5, and 10 elements.  

The results are summarized in Table-2. 

 

Table-2. Critical lateral torsional buckling moment for various FEM mesh sizes  x = positive = + 0.153 m. 
 

 Exact 

solution 

Number of elements 

1 2 3 5 10 

Critical moment, Mocr kN.m 218.973 223.283 219.108 218.997 218.976 218.973 

%  error 0 % 1.97 % 0.06 % 0.01 % 0.001 %  0 % 

Table-2 shows that the accuracy of the solution is 

very accurate and almost exact if, 10, elements are used. It 

can also be seen that using one element which is 

considered crude mesh, the error is still around 2%. For all 

practical purposes, it can be seen that three elements are 

more than enough to get very accurate results. However, in 

the general case where the moment gradient is not constant 

but rather varies along the axis of the section, several 

elements should be selected to capture the effect of 

variation of the moment gradient in what is known as the 

sensitivity analysis in FEM. 

 

Case 2: x = - 153 mm: 
The FEM solution of this case results in identical 

matrices as in the case of positive,x, except for the 

matrix, [x], which will be the negative sign of Case 1, i.e. 

 

 

 

 

[x]global =  [Ti]
T
 [x,i] [Ti] =  

-0.102 0.015 0.026 0

0.015 -0.073 0 -0.015

0.026 0 -0.204 0.026

0 -0.015 0.026 -0.102

 
 
 
 
 
 

 

 

Consequently, the characteristic equation 

becomes:  

 

{ [ [Cw] + [J ] ] + Mo [x] - Mo 
2
 [ Iy] } {D} = {0} 

 



                                VOL. 18, NO. 17, SEPTEMBER 2023                                                                                                        ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2023 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      2013 

 

156.031 -38.596 36.949 0

-38.596 63.730 0 38.596

36.949 0 312.061 36.949

0 38.596 36.949 156.031

 
 
 
 
 
 








 + Mo 

-0.102 0.015 0.026 0

0.015 -0.073 0 -0.015

0.026 0 -0.204 0.026

0 -0.015 0.026 -0.102

 
 
 
 
 
 

 

- Mo 
2
 

6

314 204 -235 0

204 980 0 -204
10

-235 0 628 -235

0 -204 -235 314



 
 
 
 
 
 

1

2

3

4

d

d

d

d

 
 
 
 
 
  

 = 

0

0

0

0

 
 
 
 
 
  

 

 

The solution of the above quadratic eigenvalue 

equation is obtained by successive iterations which yields 

four moments, { Mo }, and four mode shapes, [], as 

follows 

 

{Mo } = 

161.834

364

702

1,155

 
 
 
 
 
  

, [  ]  = 1 2 3 4       = 

1 1 1 1

3.167 0 0.545 0

0 1 0 1

1 1 1 1

 
  
 
 
  

 

 

Graphical presentation of the mode shapes is also 

shown in Figure 6 (a and c). The critical lateral torsional 

buckling moment is, of course, the smallest of the four 

moments which is given as follows 

 

Mocr = 161.834 kN.m     … vs … exact = 161.717 kN.m 

 

Similar to Case 1, and to examine the effect of 

the mesh size on the accuracy of this solution, the above 

procedures are repeated for, 1, 2, 3, 5, and 10 elements.  

The results are summarized in Table-3. 

 

Table-3. Critical lateral torsional buckling moment for various FEM mesh sizes x = negative = - 0.153 m. 
 

 Exact 

solution 

Number of elements 

1 2 3 5 10 

Critical moment, Mo cr kN.m 161.717 165.271 161.834 161.739 161.720 161.717 

%  error 0 % 2.20 % 0.07 % 0.01 % 0.002 %  0 % 

 

Table-3 shows that the accuracy of the solution is 

very much similar to Case 1, and hence might be treated 

similarly. 

It is worth pointing out that as the coefficient of 

monosymmetry, x, gets smaller, the two critical positive 

and negative moments approach each other until they 

coincide at, x = 0. It can be shown that the critical 

moment of symmetrical sections at zero, x, is not the 

average of both critical moments in the case of 

unsymmetrical sections. 

 

THE GENERAL CASE AND COMPARISON WITH 

AISC PROVISIONS 

Similar to the case of symmetric sections, AISC 

treats the general case of lateral torsional buckling with the 

help of the well-known concept of equivalent moment 

coefficient, Cb. In this approach, the critical moment of the 

basic case of the simply supported beam under equal end 

moment, Mocr, is calculated and then multiplied by the 

coefficient, Cb, to account for the difference in the end 

moment, and later, was revised to account for the moment 

gradient between the bracing points.  Accordingly, the 

critical moment, Mcr, is then calculated as 

 

Mcr = Cb Mocr 

 

As can be interpreted from the above expression, 

the coefficient, Cb = Mcr / Mocr, may be viewed as an 

indicator for the critical moment in the beam which will be 

used later for comparison between various cases. 

In the past decade, AISC considered an empirical 

expression for, Cb that considers moment gradient which is 

developed by Kirby and Nethercot (Kirby and Nethercot, 

1979).  ASIC used a slightly modified and more 

conservative form of Kirby and Nethercot expression 

which is given in its modified form as follows: 

 

max
b

max A B C

12.5 M
C     

 2.5 M + 3 M + 4 M  + 3 M


 
 

where 

M max  = absolute maximum moment between bracing 

points. 

MA  = absolute moment at one quarter point between 

bracing points. 

MB  = absolute moment at the midpoint between 

bracing points. 
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MC  = absolute moment at three quarter points 

between bracing points. 

 

The accuracy, or the conservatism, embedded in 

this empirical expression of the equivalent moment 

coefficient, Cb, in the case of symmetric sections, was 

examined for some popular cases (Armouti, 2022). While 

this approach was shown to work reasonably for 

symmetric cross sections, it may not be equally applicable 

in the case of unsymmetric sections as will be 

demonstrated later. 

It is important, at this point, to remind the reader 

of the essential difference between the critical moment of 

monosymmetric and unsymmetric beams. While the 

critical moment of symmetric sections and 

monosymmetric sections about the major axis of the beam 

is independent of the moment direction in the beam, the 

critical moment of unsymmetric section and 

monosymmetric sections about the minor axis of the beam 

depends on the moment direction in the beam in addition 

to the distribution of the internal moment along the beam 

axis. This issue creates an inconsistency in the application 

of the coefficient, Cb, in the case of unsymmetric cross 

sections of beams. 

It seems that this inconsistency in the application 

of the coefficient, Cb, in the case of unsymmetric beams is 

one of the reasons that make the code uneasy about using 

the traditional approach of, Cb, as a general procedure and 

calls for more realistic and practical methods in evaluating 

the critical buckling moment of unsymmetric beams. 

In this paper, the objective will be to examine the 

treatment of AISC to lateral torsional buckling of some 

unsymmetric sections which is presented for individually 

selected shapes in the AISC manual. The three cases 

addressed by AISC will be examined in this paper and 

compared with the FEM solution, namely, Unequal flange 

monosymmetric I-beam loaded in its web plane, T-section 

loaded in its stem plane, and unequal leg angle bent about 

its major axis. As AISC treats these three cases differently 

and separately, they will be presented separately in the 

following sections. 

For each cross section, four loading cases will be 

considered, a one-side moment, opposite end moments, a 

concentrated load in a fixed-ends beam, and a 

concentrated load in flexural fixation and with warping 

released restraint at supports as shown in Figure-7. It is 

worth mentioning that the third and fourth cases are 

introduced because the AISC code does not recognize the 

warping restraint in its expressions, and therefore, there 

will be no basis for comparison with fixed bracing. 

Therefore, the fourth case is selected to simulate a fixed-

ends beam in flexure with released restraint for warping to 

make a comparison with AISC expression on one hand 

and to examine the effect of warping restraint on the 

critical moment on the other. 

 

Unequal Flange I-Beams are Monosymmetric about 

the Web and Loaded in the Web Plane 

To avoid repetition of calculations, the cross 

section presented in Figure-4 will be used for this analysis. 

Figure-7 shows the four selected cases where, Cb, is 

calculated for each case using the AISC expression. In 

addition, for each case, the critical moment is calculated 

using FEM for both cases of positive and negative 

coefficient of monosymmetry, x, and then divided by the 

standard critical moment, Mocr. In other words, the FEM 

coefficient of the moment, Cb, FEM, is evaluated.  The 

results of the critical moments for these cases are 

presented in Table-4. 

 

 

 
 

Figure-7. Selected cases of loading and support conditions with their applied moment  

diagrams and resulting mode shapes, -angle. 
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Table-4. Comparison between AISC empirical expression and FEM solution unequal flange I-beam. 
 

Method of 

Analysis 

Coefficient of Moment, Cb 

Case 1* Case 2*  Case 4* 

 Cb 
b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 

AISC 1.67 --- 2.27 --- 1.92 --- 1.92 --- 

FEM, x = + ve 1.82 0.92 2.08 1.09 1.84 1.04 1.36 1.41 

FEM, x = - ve 1.78 0.94 2.82 0.81 2.55 0.75 2.18 0.88 

  

*The four cases are shown in Figure-7. 

 

T-Sections Loaded in Their Web Plane 
The treatment of the T-section will be illustrated 

using the cross section shown in Figure-8. The span length 

and support conditions will remain the same as given in 

the case of unsymmetric I-section. 

It is well documented that sections that are 

composed of a series of bars meeting at one point, such as 

T-sections, have a warping constant equal to zero, i.e. Cw 

= 0. The T-section properties can be obtained with a 

similar procedure of the I-beam case except for the Cw. 

The results are shown in Table-5. 

 

 
 

Figure-8. T-beam layout and boundary conditions, simple supports with simple  

braces, i.e. = 0,  ' ≠ 0. 

 

Table-5. T-beam section properties calculations. 
 

J GJ Iy EIy Cw x 

4.5 x10
6
 mm

4
 346.5 kN.m

2
 20 x10

6
 mm

4
 4,000 kN.m

2
 0 233 mm (0.233 m) 

Using the values in Table-5, the theoretical exact 

critical load is given as follows: 

 

Mocr = 
418.696

-326.711 

 
 
 

kN.m 

Performing the same analysis presented in the I-

beam case, the, Cb, values are obtained for both AISC and 

FEM as shown in Table-6. 

 

Table-6. Comparison between AISC empirical expression and FEM solutionT-beam. 
 

Method of 

Analysis 

Coefficient of Moment, Cb 

Case 1* Case 2* Case 3* Case 4* 

 Cb 
b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
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AISC 1.67 --- 2.27 --- 1.92 --- 1.92 --- 

FEM, x = + ve 1.80 0.93 1.97 1.15 1.45 1.32 1.42 1.35 

FEM, x = - ve 1.72 0.97 2.53 0.90 2.03 0.95 2.00 0.96 

 

 *The four cases are shown in Figure-7. 

 

Unequal Leg Angles Bent About Their Major Axes 
The treatment of the L-section will be illustrated 

using the cross section shown in Figure-9. The span length 

and support conditions will remain as given in the case of 

unsymmetric I-sections. Because the lateral torsional 

buckling analysis is based on the principal centroidal axes, 

the orientation and loading of the beam cross section must 

be applied in the plane of the principal minor axis, y, as 

shown in Figure-9. 

 

 
 

Figure-9. L-beam layout and boundary conditions, simple supports with simple braces,  

i.e. = 0,  ' ≠ 0. 
 

Consequently, and about Figure-9, the section 

properties can be obtained with a similar procedure of the 

I-beam case, using the principal axes, x, and y, and noting 

that Cw = 0. The results are presented in Table-7. 

 

Table-7. L-beam section properties calculations. 

 

J GJ Iy EIy Cw x 

1.823 x10
6
 m

4
 140.365 N.m

2
 9.918 x10

6
 mm

4
 1,983.6 kN.m

2
 0 83 mm (0.083 m) 

 

Using the values in Table-7, the theoretical exact 

critical load is given as follows: 

 

Mocr = 
176.875

-160.626 

 
 
 

kN.m 

 

The analysis of the L-section will be similar to 

the previous both cases of I-sec and T-sec. However, to 

make a comprehensive comparison, the coefficient of 

moment, Cb, is calculated twice. First, Cb, is calculated 

using the general expression by AISC with limits equal to, 

3, i.e. Cb ≤ 3, as shown in Table 8(a), and second, Cb, is 

calculated using the same expression by AISC with limits 

for angles equals to, 1.5, i.e. Cb ≤ 1.5, as shown in Table 

8(b). 

 

Table-8(a). Comparison between AISC empirical expression and FEM solution L-beam (Cb ≤ 3). 
 

Method of 

Analysis 

Coefficient of Moment, Cb 

Case 1* Case 2* Case 3* Case 4* 

 Cb 
b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
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AISC 1.67 --- 2.27 --- 1.92 --- 1.92 --- 

FEM, x = + ve 1.78 0.94 2.35 0.97 1.64 1.17 1.61 1.20 

FEM, x = - ve 1.75 0.95 2.60 0.88 1.87 1.03 1.84 1.05 

   

*The four cases are shown in Figure-7. 

 

Table-8(b). Comparison between AISC empirical expression and FEM solution L- beam ( Cb ≤ 1.5 ). 
 

Method of 

Analysis 

Coefficient of Moment, Cb 

Case 1* Case 2* Case 3* Case 4* 

 Cb 
b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 Cb 

b,AISC

b,FEM

C

C  
 

AISC 1.67 --- 2.27 --- 1.92 --- 1.92 --- 

FEM, x = + ve 1.78 0.84 2.35 0.64 1.64 0.91 1.61 0.93 

FEM, x = - ve 1.75 0.86 2.60 0.58 1.87 0.80 1.84 0.82 

 

*The four cases are shown in Figure-7. 

 

DISCUSSIONS 
In this section, the results obtained and presented 

in the previous sections will be analyzed. Tables 4, 6, 8(a), 

and 8(b) are combined and presented in Figure 10 and 

Figure-11 for positive and negative values of,x, 

respectively. Note that a value of, Cb-ratio, above one in 

these figures indicates an overestimation of the critical 

moment by AISC expression, and hence the beam would 

be unsafe.  

An important difference and variation between 

the cross section and load cases are highlighted to examine 

their effect on the analysis. First, note that the T and L 

sections have zero warping constants, i.e. no resistance to 

warping. Second the value of,x, for the T and L sections 

are 233 mm and 83 mm respectively, which means that the 

T-section value of,x, is almost three times its value of the 

L-section. 

Figure-10 indicates that the AISC empirical 

expression results for, Cb, are not always conservative. It 

shows that the beam is safe (Cb-ratio ≤ 1) when the 
moment diagram lies on one side of the beam (Case 1), i.e. 

when the sign of,x, does not change along the axis of the 

beam. However, when the bending moment diagram starts 

to lie on both sides of the beam where,x, flips from 

positive to negative and visa versa, the values of, Cb-ratio, 

start to exceed one which indicates that AISC 

overestimates the critical moment, and hence the beam 

becomes unsafe. The reason for this discrepancy is that 

when the value of,x, is negative in some regions of the 

beam, it will reduce the critical moment in these portions. 

Examination of the AISC expression reveals that the AISC 

does not recognize these changes and does not consider 

them. 

Consequently, it can be concluded that the 

validity of AISC, Cb, is dependent on the location and 

distribution of the internal bending moment diagram about 

the axis of the beam which creates regions of positive and 

negative coefficient of, x. Figure-10 shows clearly that 

the more variation of the sign and distribution of the 

internal moment, the more deviation of results in the value 

of, Cb-ratio, takes place i.e. going from less variation in 

Case 2 to more variation in Case 4. Furthermore, the AISC 

solution becomes unconservative when the moment starts 

to lie and vary on both sides of the beam as in Case 2 to 

Case 4. The situation becomes more distinct and even 

worse with larger variations of the moment. This fact is 

reflected in the AISC expression as it overestimates the 

critical load by 9% in Case 2 and by 41% in Case 4. 

Figure-11 shows the opposite effect that appears 

in Figure-10 which means that AISC offers a conservative 

solution when x, is negative; and the internal moment 

appears only on one side of the beam as in Case 1. When 

the moment starts to lie and vary on both sides of the beam 

as in Case 2 to Case 4, the AISC solution becomes more 

conservative where the underestimation of the critical 

moment reaches up to 81% of the actual critical moment 

as shown in Case 2. 

Figure-10 shows that applying the, Cb, concept to 

the case of positive,x, is disadvantageous and brings the 

Cb-ratio, above one because the variation of the bending 

moment diagram along the beam axis simply decreases the 

base critical moment, Mocr, in regions when,x, becomes 

negative. This reduction in the base moment is not 

considered by AISC as it applies, Cb, to a base moment of 

constant value along the beam axis similar to the case of 

symmetric cross sections. On the other hand, Figure-11 
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shows exactly the opposite effect as variation of the 

moment diagram along the beam axis increases the base 

critical moment, Mocr, in regions when,x, becomes 

positive.   

The effect of warping restraint on the critical 

moment and its impact on AISC, Cb, expression can be 

examined by comparing Case 3 (warping restraint) with 

Case 4 (warping release) results which indicate that there 

is a significant drop in the critical moment of the I-beam 

(up to 40% in Figure-10) when warping restraint is 

released. However, the warping release has negligible 

effect on the other three cross sections, T, and L, because 

their warping constant equals zero, and therefore they do 

not have warping resistance. As pointed out earlier, the 

warping presence is not recognized by the AISC 

expression of, Cb. 

The effect of,x, on the critical moment and its 

impact on AISC, Cb, expression can be examined by 

comparing Figures 10 and 11. To exclude the effect of 

warping in this case, consider the cross section of zero 

warping constants for comparison, i.e. T and L sections. 

The differences again appear in the cases of variation of 

sign and distribution of moment diagram along the beam 

axis (cases, 2, 3, and 4). It can be seen from Figures 10 

and 11 that the higher the value of,x, the further the 

results between positive and negative,x, are pushed apart. 

Recall that the value,x, for T-section and L-section are, 

233 mm and 83 mm, respectively. 

 

 
 

Figure-10. Response comparison between cross sections according to loading cases, x = + ve. 

 

 
 

Figure-11. Response comparison between cross sections according to loading cases, x = - ve. 

 

CONCLUSIONS 
Lateral torsional buckling of beams is an 

important issue and at the same time a complex one. The 

finite element method offers an ideal solution for this 

problem. As pointed out in this paper, the traditional and 

classical treatment of lateral torsional buckling relies 

heavily on traditional methods of approximations and 

crude factors of safety due to the difficulties of obtaining 

reasonable solutions by classical mechanics methods. It 

was pointed out that the code even ignores the warping 

boundary conditions     

The uncertainty and high conservatism of the 

correct solution render inconsistent reliability among the 

different components of the structure which is, in fact, 

contrary to the modern code philosophies of having 

consistent reliability indices throughout the entire 

structure. 

As pointed out in a previous paper for the author, the FEM 

solution for symmetric cross sections offers a general 

solution that realistically and fairly accurately models all 

issues of lateral torsional buckling of beams. Such issues 

span from cross section properties and boundary 

conditions to loading schemes. FEM solution is a 

consistent and reliable solution regardless of these 

variations. 

In this paper, it has been shown that for 

unsymmetric cross sections, the empirical expression 

becomes unreliable as it fails to capture the variation and 

change of sign of internal moment on LTB of beams, and 

hence unwarranted to provide correct and safe critical 

moment for the problem of LTB. 

Given the above discussion, it is recommended 

that the codes should, at least, stop the permission of 

applying the empirical expression of, Cb, as is to 
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unsymmetric beams until a consistent expression is 

developed for these unsymmetric cases. The code, of 

course, recognizes this inconsistency of its expression 

when it comes to unsymmetric beams and therefore, it 

calls for more reliable methods to be used to obtain the 

critical moment. 

In this paper, FEM in its simplest application of 

linear elements is presented as an alternative reliable 

solution to the fixed equations presented in the code for 

lateral torsional buckling of beams. It is needless to 

remind ourselves that at this age of availability of 

computers, FEM can be easily programmed and 

implemented in the engineering consulting practice, 

especially if linear elements are selected for this subject 

without using three-dimensional shell elements for 

example. 

Finally, it is worth pointing out that these 

problems, discrepancies, and inconsistencies that appear in 

the, Cb, application in the case of unsymmetric cross 

section, do not exist in the case of symmetric cross 

sections. It was shown in (Armouti, 2022) that in the case 

of symmetric cross sections, where,x, is zero, the base 

critical moment will always be constant and is always 

independent of the sign of the internal moment, and hence, 

the, Cb, results are independent of the moment sign and 

distribution of the internal moment along the beam axis. 

Therefore, unlike the case of unsymmetric sections, the Cb, 

in the case of symmetric sections can still be fairly applied 

even if it does not provide the same level of reliability 

among the various cases of loading and boundary 

conditions. 

On the contrary, the discrepancies, and 

inconsistencies that appear in the, Cb, application in the 

case of unsymmetric cross section produce a wide 

variation of the true critical moment where it is shown 

previously that unconservatism can go up to 40% of the 

true critical moment, whereas, the conservatism can go 

down up to 20% of the true critical moment. Such large 

variation and difference between conservatism and 

unconvertasim is not a good engineering practice. Such 

difference can be avoided by applying the simple 

application of FEM with linear elements as presented in 

this paper. 
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