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ABSTRACT 

This study compares and evaluates the performance of four Convolutional Neural Network (CNN) models, 

namely ResNet152, VGG19, DenseNet201, and Inceptionv3, for thermal images-based detection of faults in electric 

vehicle (EV) battery cells utilizing temperature. A dataset comprising thermal images of battery cells with various fault 

types and severities is collected and preprocessed for model training. Transfer learning is applied to train the CNN models 

using pre-trained weights on large-scale image datasets. The trained models are assessed using evaluation metrics that 

include precision, recall, F1-score, and accuracy, while their computational efficiency is evaluated in terms of inference 

time and memory usage. Results show promising performance for all four CNN models in detecting faults in battery cells. 

DenseNet201 achieves the highest accuracy, followed by ResNet152, VGG19, and Inceptionv3. Inceptionv3 demonstrates 

superior computational efficiency. These findings aid researchers and practitioners in selecting an appropriate CNN model 

for thermal image-based fault detection in EV battery cells, considering the balance between accuracy and computational 

efficiency. 
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INTRODUCTION 

The detection of faults in electric vehicle (EV) 

battery cells is vital for ensuring their safe and efficient 

operation. Faults can lead to reduced performance, 

diminished battery life, and potential safety hazards. 

Thermal imaging has emerged as a valuable tool for fault 

detection in EV batteries. By capturing temperature 

distributions, thermal imaging can identify anomalies such 

as hotspots and thermal gradients, indicating underlying 

faults. This non-invasive technique enables real-time 

monitoring, early fault identification, and large-scale 

screening. Utilizing advanced deep learning models like 

Convolutional Neural Networks (CNNs), thermal imaging 

facilitates accurate and efficient fault detection, 

contributing to the reliability, longevity, and safety of EV 

battery cells. 

CNNs have modified an area of artificial 

intelligence (AI), including thermal image-based fault 

detection. CNN models excel in extracting and learning 

hierarchical features from images, making them ideal for 

analyzing thermal images and identifying faults in electric 

vehicle (EV) battery cells. These models have been 

developed and implemented successfully to a variety of 

tasks such as object recognition, segmentation, and 

classification. In thermal image-based fault detection, 

CNNs can effectively capture intricate patterns and 

temperature variations associated with different types of 

faults. By leveraging the power of deep learning, CNN 

models enable automated and accurate fault detection, 

aiding in the maintenance and safety of EV batteries. 

Detecting battery defects in electric vehicles 

(EVs) is essential for their dependability and safety. 

Existing methods struggle to identify faults early due to 

inconsistencies that resemble faults. This paper introduces 

a fault diagnosis approach using signal decomposition and 

two-dimensional feature clustering. Up to forty-three days 

before any thermal runaway, the proposed method 

accomplishes early fault evaluation and voltage 

abnormality identification, demonstrating robustness and 

ease with online implementation [1]. 

This comprehensive review focuses on 

understanding the internal failure mechanisms, including 

interior short circuit and thermal runaway, that occur in 

lithium-ion batteries. It emphasizes the significance of 

implementing rigorous safety testing methods to enhance 

the safety of electric vehicles, while also identifying 

potential research directions for future advancements [2]. 

This study investigates external short circuit 

(ESC) defects in lithium-ion batteries experimentally, 

establishing a novel platform for ESC evaluation on ten 

18650-type cells at various states of charge. It 

analyzes ESC process, develops an improved first-order 

RC model, and proposes a two-layer model-based fault 

detection algorithm, demonstrating accurate and efficient 

fault diagnosis within 5 seconds [3]. 

This study examines the temperature rise 

characteristics of lithium-ion batteries (LiBs) caused by an 

external short circuit (ESC) and proposes an online 

forecast method for the highest rise in temperature. The 

approach, validated with results, achieves precise 

predictions up to 22.3 seconds in advance with a mean 

prediction error of 3.05% for eight test cells [4]. 

This review discusses the challenges posed by the 

inconsistency and aging of individual battery cells in 
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electric vehicle systems. It analyzes various fault types, 

including sensor, actuator, short circuit, overcharge/over-

discharge, connection, insulation, and thermal 

management system faults. The paper explores fault 

diagnosis methods, research trends, and potential 

directions driven by emerging technologies such as big 

data analytics [5]. 

A method described for detecting connection 

defects in lithium-ion power batteries used in electric 

vehicles that are connected in series. Cross-voltage testing 

is utilized to differentiate between contact resistance 

increases and internal resistance increases. Voltage and 

temperature data are gathered, and a defect severity 

evaluation based on a modified Z-score analysis is 

performed. The proposed approach improves the security 

of electric vehicle systems [6]. 

This article proposes a method for intelligently 

diagnosing lithium-ion battery faults in electric vehicles. 

The method precisely identifies fault states and degrees by 

employing support vector machines (SVM) and 

incorporating denoising techniques, a modified covariance 

matrix, and optimized parameter selection. The proposed 

method provides a practical solution for intelligent fault 

diagnosis, allowing for efficient battery pack safety 

evaluation and future fault management strategies. [7]. 

A novel data-driven method is introduced for 

defect diagnosis and early warning of heat loss in electric 

vehicle lithium-ion battery packs. The method 

accomplishes accurate identification of early faults and 

captures state changes for fault diagnosis by analyzing 

normalized battery voltages. Validation with actual 

operational data demonstrates the method's efficacy, 

providing dependable detection and prompt warning of 

thermal runaway [8]. 

This investigation examines the influence of state 

of charge (SOC) and degree on external short circuit 

(ESC) defects in lithium-ion batteries. The electrical 

operation of battery cells from ESC defects is described 

using fractional-order and first-order RC models, with 

model parameters identified using a genetic algorithm 

(GA). A three-step model-based algorithm for identifying 

ESC defects and electrolyte leakage in real time is 

proposed. Experimental results demonstrate efficient 

diagnosis of all ESC cells [9]. 

This paper proposes a fault detection method for 

electric vehicles (EVs) based on the interclass correlation 

coefficient (ICC). By analyzing voltage drop trends and 

extracting voltages from EV service and management 

centers, the ICC values are calculated to identify battery 

faults. The method offers advanced fault resolution, 

prolonged fault memory, and effective fault signal 

detection for EVs [10]. 

This work introduces a model-based insulation 

defect analysis technique for electric vehicle lithium-ion 

battery systems. It establishes a comparable circuit model, 

determines the model's parameters using the recurrent 

least-squares technique, and employs a Kalman filter-

based state analyzer for joint battery voltage and state-of-

charge estimation. Experimental verification demonstrates 

that the proposed procedure is effective [11]. 

This work presents a fault detection technique for 

rotating machinery and engines based on thermal image 

analysis. A novel feature extraction technique called 

BCAoID (Binarized Common Areas of Image 

Differences) is introduced. Thermal images of faulty 

electric impact drills are analyzed, achieving high 

recognition accuracy of 97.91% to 100%. The approach 

holds promise for cost-effective maintenance and 

protection of rotating machinery and engines [12]. 

This paper introduces a 2D-DWT-based infrared 

thermography (IRT) method for diagnosing bearing faults 

in induction motors. By reducing noise and extracting 

relevant features using PCA and the Mahalanobis distance, 

the proposed method achieves optimal feature selection. 

Classification results show that support vector machine 

(SVM) outperforms other classifiers, offering the potential 

for self-adaptive recognition of bearing faults and 

preventing system shutdowns [13]. 

This paper presents a framework for EV fault 

detection in intelligent transportation systems using deep 

learning and blockchain technology. Using convolutional 

neural networks (CNN) and long-short-term memory 

(LSTM) models, EV defects are identified. A 5G wireless 

network with an interplanetary file system (IPFS) ensures 

secure and scalable data transactions. Performance 

evaluation demonstrates high accuracy and reliability in 

fault detection [14]. 

This paper introduces a thermographic 

fault detection technique for air flow in brushless DC 

(BLDC) motors. By analyzing various states BLDC 

motors, an approach for feature extraction termed 

CPoAMoTI is proposed and successfully applied to 

analyze thermal images. The developed technique has 

numerous applications for detecting airflow issues in 

electric vehicles, trains, fans, clippers, computers, and 

cordless generators [15]. 

This paper presents an in-situ diagnostic and 

prognostic (D&P) technology for monitoring the health of 

insulated gate bipolar transistors (IGBTs) in electric 

vehicles. The proposed method utilizes IGBTs' thermal 

impedance and junction temperature as health indicators, 

employing temperature-sensitive parameters for through-

life condition monitoring. Experimental validation and 

comparisons with simulation, acoustic microscope, and 

thermal images confirm the effectiveness of the developed 

circuitry in detecting solder fatigue [16]. 

This study suggests a BP neural network-based 

fault detection and operation and maintenance technique 

for PV systems. The analysis of short circuit and 

anomalous ageing failures in solar modules leads to the 

development of a fault diagnosis model. The procedure 

makes use of information gathered from a distributed 

photovoltaic information processing system and offers 

helpful advice for maintaining and operating PV modules. 

Simulation findings confirm the efficacy of the suggested 

strategy [17]. 
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This paper describes a wavelet-neural method for 

identifying flaws in Lithium-ion batteries used in electric 

vehicles. By considering multiple factors and employing 

voltage fluctuation data obtained through simulations, the 

proposed method eliminates noise using discrete wavelet 

transform (DWT) and utilizes parameters for fault 

classification. Experimental results demonstrate improved 

efficiency and precision in fault degree classification [18] 

 

METHODOLOGY 

Ensuring the safety and reliability of lithium-ion 

battery (LIB) packs and minimizing potential risks in LIB-

based systems are vital aspects of Battery Management 

Systems (BMS). Detecting and diagnosing faults in LIB 

systems and implementing robust defense mechanisms are 

critical tasks. To develop an effective fault diagnostic 

strategy, a comprehensive understanding of various types 

of faults and their underlying mechanisms in LIBs is 

essential. This knowledge is necessary for establishing 

appropriate measures that address potential issues and 

ensure the smooth and secure operation of LIB-based 

systems. 

The different CNN model proposed to detect 

potential defects including cell damage, interior short 

circuits, and thermal variations by analysing temperature 

through annotated thermal images. The model will be 

trained to derive appropriate features and determine fault 

sets for detected regions. The approach consists of 

preprocessing, model training, and metric-based 

performance evaluation. The objective of this research is 

to enhance the safety and dependability in electric vehicles 

battery systems, thereby enhancing their overall 

performance and mitigating potential risks associated with 

battery failures. 

 

 
 

Figure-1. Block diagram of the proposed model. 

 

Essential battery parameters such as voltage, 

current, and temperature are recorded using data 

acquisition system during the battery fault diagnostic 

procedure. Consumption patterns and tests generate 

additional information. Data on battery faults is gathered 

from both operational data and laboratory tests. Following 

the collection of unprocessed data, it is preprocessed to 

clean and extract relevant features. The information is then 

divided arbitrarily into training and test sets. The training 

set is used to instruct Deep Learning fault diagnostic 

strategy, whereas the test set is utilised for validation. 

Utilising determined battery parameters such as 

functioning current, junction voltage, and temperature, the 

validated CNN model is used to detect battery faults. The 

fault signal detected by the battery protection system 

functions as a command. Four CNN model approaches 

have been introduced for developing the CNN-based fault 

diagnostic scheme, which will be briefly discussed in the 

following section. 

In numerous applications, consisting of electric 

vehicles, small electronics, and solar power systems, 

lithium-ion battery packs are a prevalent energy storage 

technology. To accomplish the desired voltage and 

capacity, they consist of multiple lithium-ion battery cells 

connected in series and parallel. Each cell consists of a 

positive (cathode) electrode, a negative (anode) electrode, 

and an electrolyte that facilitates the movement of lithium 

ions during charge and discharge cycles. Lithium-ion 

battery packs are distinguished by their high density of 

energy, extended cycle life, and quick charging 

capabilities. Lithium-ion battery cell packs are sensitive to 

temperature variations in different conditions. High 

temperatures, such as during charging or discharging at 

fast rates, can accelerate chemical reactions and degrade 

the cell's performance and lifespan. On the other hand, 

extremely low temperatures reduce the ionic conductivity 

within the cell, leading to reduced capacity and voltage 

output. Elevated temperatures can also increase the risk of 

thermal runaway, potentially causing safety hazards. 

Proper thermal management is crucial to maintain the 

ideal operating temperature range and ensure safe and 

efficient performance of lithium-ion cell packs in various 

environments, from extreme weather conditions to high-

demand applications like electric vehicles. 

 

 
 

Figure-2. Lithium ion battery cells pack image. 
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Table-1. The parameters and specification detail  

of battery. 
 

Parameters Specification 

Model 

Voltage Input 

Voltage Output 

Current 

Each cell power 

rating 

Maximum Voltage 

cell 

Minimum Voltage 

cell 

Cells total 

Weight 

NG1 Battery 

charger 

230v AC, 6A, 

50-60 Hz 

50.4V DC, 12A 

20Ah 

37.00 Wh 

4.0  Cells 

3.1 Cells 

28 Cells 

10.5 kg 

- 

- 

- 

- 

- 

56.0v Packs 

43.4v Packs 

14 Packs 

- 

 

Data Collection Process 

The thermal images were captured using an 

appropriate thermal camera for battery cell inspection. The 

data collection process involved acquiring thermal images 

from a variety of electric vehicle battery cells under 

different operating conditions and fault scenarios. The 

images were captured using consistent imaging 

parameters, such as resolution, temperature range, and 

emissivity, to ensure uniformity and comparability. 

 

Pre-Processing and Augmentation Process 

In the Comparison of CNN Models for Thermal 

Image-Based Fault Detection in Battery Cells, the 

preprocessing and augmentation procedure is important 

for optimising the operation of deep learning model. 

Firstly, thermal images of battery cells are collected and 

normalized to a standardized scale to ensure consistency. 

The images are resized to match input size of CNN models 

(ResNet152, VGG19, DenseNet201, and Inception v3), 

reducing computational complexity. 

The preprocessed and augmented dataset is then 

divided into testing, validation, and training sets to 

evaluate the outcomes of each CNN model on raw data. 

By employing these preprocessing and augmentation 

strategies, the comparison study seeks to identify the most 

accurate and efficient CNN model for thermal image-

based defect detection in battery cells, contributing to 

security and dependability of electric vehicle battery 

system. 

The pre-processing techniques are applied to 

enhance the quality and consistency of the input data. 

Thermal images captured from different sources or devices 

may have varying intensity ranges. To standardize the 

pixel values, we perform min-max normalization, scaling 

the pixel intensities between 0 and 1. This ensures that the 

CNN models converge faster during training. To maintain 

a consistent input size for the CNN models, we resize all 

thermal images to a predefined resolution of 256x256. 

Resizing reduces computational complexity while 

preserving the essential features. Since thermal images are 

typically grayscale, we convert any colored thermal 

images into grayscale. This reduces the number of 

channels and simplifies the input for the CNN models. 

Data augmentation is essential for increasing the 

diversity of the training dataset, thereby improving the 

generalization of the CNN models. For thermal images, 

the following augmentation techniques are employed. 

Random rotation within a specified angle range (e.g., -15 

to 15 degrees) is applied to the thermal images. This helps 

the model learn rotation-invariant features and enhances 

its ability to detect faults from various orientations. 

Random horizontal and vertical flips are performed on the 

thermal images. Flipping allows the model to capture 

different reflections or symmetries in the thermal patterns, 

thereby enriching the dataset. Random crops of the 

thermal images are taken, with each crop being a sub-

region of the original image. This creates variations in the 

training data and improves the model's robustness to 

different image compositions. 

 

Table-2. The dataset description and purpose. 
 

Dataset Split Description Purpose 

Training Set 

Largest subset used for model 

training. 

Contains labeled thermal images. 

Learn patterns and adjust 

parameters. 

Validation Set 

Smaller subset for hyper parameter 

tuning. 

Separate from the training set. 

Fine-tune model and 

monitor performance. 

Testing Set 

Completely unseen data for 

evaluation. 

Not used during model training. 

Assess model 

generalization ability. 

 

Spatial Feature Extraction 

In thermal images, spatial features correspond to 

patterns and structures present in different regions of the 

image. These features are essential for identifying fault-

related thermal patterns in battery cells. Each CNN model 

has its unique approach to spatial feature extraction, 

contributing to their respective performance in the fault 

detection task. 

ResNet152 and DenseNet201 both utilize deep 

residual and dense connectivity, respectively, which 
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enables them to capture intricate spatial features at 

multiple scales. Residual connections in ResNet152 

facilitate the learning of residual mappings, effectively 

handling spatial variations caused by temperature changes. 

DenseNet201's dense connectivity enhances spatial 

information sharing between layers, allowing it to capture 

spatial patterns effectively. VGG19 follows a traditional 

approach with sequential convolutional layers, which can 

learn spatial features progressively. Although it may lack 

the depth of ResNet152 and DenseNet201, VGG19's small 

3x3 filters still enable it to capture spatial details relevant 

to fault detection. 

Inception v3's architecture focuses on capturing 

multi-scale features using inception modules. The parallel 

branches in these modules process the input image at 

different spatial resolutions, enabling Inception v3 to 

capture diverse spatial patterns related to battery cell 

faults. Overall, the spatial feature extraction capabilities of 

these CNN models play a significant role in their 

effectiveness for thermal image-based flaw detection in 

battery cells utilizing temperature as a parameter. A 

combination of deep architectures, residual connections, 

dense connectivity, and multi-scale processing allows 

these models to extract and analyze spatial patterns 

essential for accurate fault detection in electric vehicle 

battery cells. 

 

Table-3. CNN models number of layers and output size. 
 

CNN Model 
Number of 

Layers 

Size of Output 

(Features) 

ResNet-152 152 2048 

VGG19 19 1280 

DenseNet-201 201 1920 

Inception v3 Over 100 1780 

 

Convolutional Neural Networks (CNN) 
The layers of a typical CNN (Convolutional 

Neural Network) model are designed to process and 

extract image features. The primary layers include: 

 

a) Convolutional Layers: These layers employ with a 

number of filter learning to convolve over input 

image, extracting feature such as edges, textures, and 

patterns. 

b) Activation Function: After every convolutional layer 

is completed, a non-linear activation function such as 

ReLU (Rectified Linear Unit) is used to make the 

model capable of learning complex patterns. 

c) Pooling Layers: Pooling layers downsampled the 

feature maps, reducing computational complexity and 

providing spatial invariance to small translations in 

the input. 

d) Fully Connected Layers: These layers process the 

high-level features extracted by the previous layers 

and make predictions based on them. In image 

classification tasks, the final fully connected layer 

typically outputs the final class probabilities. 

The flow of information from the input to the 

output is guided by a series of these layers, creating a 

hierarchical representation of the input image and enabling 

the model to make accurate predictions for various 

computer vision tasks.  

 

 
 

Inception V3 model  

The model's architecture is characterized by 

Inception modules, featuring parallel convolutional 

branches with various filter sizes (1x1, 3x3, and 5x5) and 

max-pooling layers. These modules allow the network to 

capture features at various spatial scales, making it adept 

at identifying diverse thermal patterns associated with 

battery cell faults. 

 

 
 

Figure-3. The architecture of CNN inception v3 model. 
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The Inception v3 model optimizes computation 

by utilizing factorization techniques, breaking down large 

convolutions into smaller ones, which is essential for the 

efficient processing of thermal images with temperature as 

a parameter. 

Inception v3 incorporates batch normalization to 

stabilize and expedite training, ensuring the model can 

handle variations in temperature data during the learning 

process. Furthermore, auxiliary classifiers are introduced 

to alleviate the vanishing gradient problem associated with 

deep networks, enhancing the model's fault detection 

performance. Global average pooling is employed instead 

of fully connected layers, reducing parameter complexity 

and making the model more memory-efficient. This spatial 

invariance ensures the model's robustness to spatial 

changes in thermal images caused by varying 

temperatures. Overall, the Inception v3 model's 

architecture provides a powerful and efficient solution for 

detecting faults in lithium-ion battery pack cells using 

thermal images with temperature as a parameter. Its ability 

to capture multi-scale features, coupled with temperature 

parameter handling and computation optimization, makes 

it a valuable tool for enhancing the safety and reliability of 

electric vehicles by enabling early and accurate fault 

detection in their battery cells. 

 

VGG19 Model 

For image recognition tasks, the VGG19 model is 

a popular and influential convolutional neural network 

(CNN) structure.  Both the VGG19 and VGG16 models 

are designated according to the number of layers that they 

contain. 

VGG19's architecture is comprised of 19 layers, 

consisting of 16 convolutional layers and 3 completely 

connected layers. Each convolutional layer utilizes small 

3x3 filters, which leads to a deep network with a total of 

approximately 144 million parameters. This depth allows 

VGG19 to learn intricate and hierarchical features from 

input images, it highly effective for different computer 

vision tasks. 

VGG19's architecture follows a straightforward 

design philosophy, with consecutive convolutional layers 

followed by max-pooling layers for downsampling. The 

use of small filters enables network to capture fine-grained 

patterns input data. The fully connected layers at the end 

of the architecture combine the learned features to produce 

the final classification output. 

Due to its simplicity and effectiveness, VGG19 

has become a popular choice as a baseline model for many 

CNN-based applications. It has also inspired the 

development of more advanced architectures. However, 

the main drawback of VGG19 is its high computational 

complexity, which can make it computationally expensive 

to train and deploy compared to more recent CNN 

architectures. 

In conclusion, the VGG19 model's architecture 

with its 19 layers and small 3x3 filters has played an 

important role in the advancement of deep learning for 

computer vision tasks. Its capacity to acquire intricate 

characteristics has made it a dependable option for various 

image recognition applications, despite its computational 

cost. 

 

 
 

Figure-4. The Architecture of CNN VGG19 model. 

 

Dense net 201 Model 

The DenseNet-201 architecture is a deep 

convolutional neural network (CNN) model developed as 

part of the DenseNet family by researchers at the 

Computer Vision Laboratory, ETH Zurich. DenseNet-201 

is an extension of DenseNet-121 and DenseNet-169, with 

its name indicating it has 201 layers. 

The key architectural feature of DenseNet-201 is 

the dense connectivity pattern it employs. Unlike 

traditional In contrast to CNNs that stack layers 

sequentially, DenseNet-201 connects each successive 

layer to every succeeding layer using feed-forward. This 

dense access enables feature reuse and promotes network-

wide information flow. It also reduces the number of 

parameters, making the model more memory-efficient 

compared to traditional deep networks. 

DenseNet-201 comprises densely connected 

dense blocks, which are sets of layers with direct 

connections between them. Each dense block contains 

multiple convolutional layers, and these blocks are 

followed by transition layers that perform downsampling 

to decrease spatial dimensions of feature maps. 

By utilising dense connectivity, DenseNet-201 is 

able to capture intricate patterns in input data, making it 

highly effective for different kinds of computer vision 

tasks, such as classification of images, detection of 

objects, and semantic division. The model's depth and 

connectivity contribute to its representation power, 

allowing it to learn complex features from the data and 

achieve state-of-the-art functioning on various benchmark 

datasets. Overall, the DenseNet-201 architecture's dense 

connectivity and hierarchical feature learning capabilities 

have created it a prominent option in the art of deep 

learning for image-related tasks, and it continues to be 

widely adopted and explored for various challenging 

computer vision applications. 
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Figure-5.The Architecture of CNN Dense net 201 model. 

 

Resnet152 Model 

The ResNet-152 model is a powerful 

convolutional neural network (CNN) structure developed 

as part of the ResNet (Residual Network) series by 

researchers at Microsoft. It is an extension of the original 

ResNet-50 model, with its name indicating it has 152 

layers. 

ResNet-152's essential innovations are the use of 

residual blocks that solve the problem of gradients 

disappearing in extremely deep networks. A residual block 

is comprised of skip or quick links that bypass several 

network layers. These skip connections enable the network 

to gain information about residual mappings, making it 

easier to optimize and train deeper networks effectively. 

ResNet-152's architecture consists of multiple 

residual blocks, allowing it to acquire a hierarchical 

structure of input data. The model's depth contributes to its 

potential to acquire intricate image features and patterns, 

making it highly effective for image categorization, object 

identification, and semantic segmentation. 

ResNet-152 exhibits remarkable performance due 

to its deep architecture and residual connections, enabling 

it to attain advanced results on various computer vision 

benchmarks. The model's scalability allows researchers to 

build even deeper variations, demonstrating its impact on 

the development of other CNN architectures. Despite its 

depth, ResNet-152 can be trained efficiently with modern 

optimization techniques and hardware, making it a widely 

adopted architecture in the deep learning community. Its 

residual connections have proven to be a crucial 

component in building very deep neural networks, 

ensuring stable and efficient training, and contributing to 

its success in various computer vision tasks. 

 

 
 

Figure-6. The Architecture of CNN Resnet152 model. 

 

RESULTS AND DISCUSSIONS 

The over-discharge test is a critical experiment 

conducted on lithium-ion batteries to assess their 

performance and safety under extreme conditions of 

excessive discharge. In this test, the battery is intentionally 

discharged well below its recommended lower voltage 

limit, simulating scenarios of prolonged or improper usage 

that lead to overdischarge. The objective is to understand 

how the battery responds to such adverse conditions, 

including risks of capacity degradation, reduced cycle life, 

and potential safety hazards like cell damage or thermal 

instability. The results of the overdischarge test provide 

valuable insights into the battery's ability to withstand 

extreme discharge situations and its protective 

mechanisms against overdischarge. This information is 

essential for designing battery management systems, 

protective circuits, and algorithms that prevent 

overdischarge and enhance battery longevity and safety. 

However, conducting the overdischarge test requires strict 

adherence to safety protocols to avoid irreversible damage 

or safety hazards. Proper safety measures and controlled 

testing environments are crucial to ensure reliable 

evaluation of battery behavior and contribute to the 

continuous improvement of lithium-ion battery technology 

for safer and more reliable energy storage applications. 

The experimental results of different lithium-ion battery 

has been demonstrated in Table-4. 
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Table-4. Normal and abnormal condition of battery. 
 

 
 

The evaluation was performed on comprehensive 

records of thermal images from battery cells, with 

associated temperature information. The comparative 

metrics used were accuracy, precision, recall, and F1-

score. 
 

a) Accuracy: Accuracy is a fundamental performance 

metric measuring an amount of instances that were 

correctly classified relative to the total number of 

instances in a dataset. It gives a complete review of 

the model's potential to forecast fault and everyday 

situations accurately. 

b) Precision: Precision is the ratio of true positive 

predictions (correctly predicted positives) to the 

overall amount of positive predictions produced by a 

model. It evaluates the model's capacity to avoid false 

positives, signifying the model's accuracy in detecting 

actual faults among predicted fault cases. 

c) Recall (Sensitivity): Recall, referred to as ability or 

really positive rate, is the ratio of genuine positive 

results to the overall amount of true positive 

predictions. It reflects the model's sensitivity to detect 

actual faults, reflecting its sensitivity to identifying 

true faults. 

d) F1-Score: The F1-score represents the average of 

precision and recall. It measures the model's output in 

terms of recall as well as precision. As it considers 

both false positives and false negatives, the F1-score 

is especially helpful when there is a difference 

between a fault and normal samples in the analysis. 

The performance of each CNN model can vary 

based on its architecture, depth, and ability to capture 

spatial features in thermal images. High accuracy, 

precision, recall, and F1-score indicate model's proficiency 

in detecting faults accurately and reliably. However, 

achieving high scores in all metrics is often challenging, 

and there might be a trade-off between them. For example, 

a model with high recall may have lower precision and 

vice versa. The evaluation of these metrics aids in 

identifying the model that strikes the best balance between 

accurate fault detection and minimizing false predictions, 

ensuring its effectiveness in real-world scenarios. 

The experimental results demonstrated that 

DenseNet201 achieved the highest overall accuracy 

among the four models, closely followed by ResNet152. 

Both models outperformed VGG19 and GoogLeNet in 

terms of accuracy, precision, recall, and F1-score. The 

DenseNet201's dense connectivity and ResNet152's 

residual blocks were particularly beneficial in capturing 

relevant features from thermal images with temperature as 

a parameter, leading to better fault detection performance. 
 

Confusion Matrix 

The confusion matrix consists of four key 

elements: 

True Positive (TP): The number of instances 

that are correctly predicted as positive (correctly classified 

as belonging to the positive class). 

False Positive (FP): The number of instances 

that are incorrectly predicted as positive (incorrectly 

classified as belonging to the positive class when they 

actually belong to the negative class). 

True Negative (TN): The number of instances 

that are correctly predicted as negative (correctly classified 

as belonging to the negative class). 

False Negative (FN): The number of instances 

that are incorrectly predicted as negative (incorrectly 

classified as belonging to the negative class when they 

actually belong to the positive class). 

 

The CNN algorithm is employed to detect the 

presence of battery cell pack faults in images. For training 

the CNN model, a dataset of 1141 images with abnormal 

conditions and 1900 images with normal conditions was 

used. The transfer learning technique was applied, 

utilizing the pre-trained weights from DenseNet201, 

ResNet152, VGG19, and Inception V3 models to train the 

CNN model. The objective is to create a more successful 

classification model. 

To evaluate the performance, the trained models 

underwent testing using the cross-validation method, 

thereby increasing classification reliability. Four different 

CNN models were compared to identify the most 

successful one. The classification results obtained from the 

CNN model trained with DenseNet201 were presented in 

Table 5, using a confusion matrix to depict the 

classification outcomes. 

 

Table-5. Confusion matrix of DenseNet201 CNN model. 
 

 
TRUE CLASS 

Normal Abnormal 

PREDICTED 

CLASS 

Normal 1891 9 

Abnormal 27 1114 
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Table-6 presents confusion matrix displaying 

classification results obtained from CNN model trained 

using ResNet152. 

 

Table-6. Confusion matrix of ResNet152 CNN model. 
 

 
TRUE CLASS 

Normal Abnormal 

PREDICTED 

CLASS 

Normal 1862 38 

Abnormal 52 1089 

 

Table-7 presents confusion matrix displaying 

classification results obtained from CNN model trained 

using VGG19. 

 

Table-7. Confusion matrix of VGG19 CNN model 
 

 
TRUE CLASS 

Normal Abnormal 

PREDICTED 

CLASS 

Normal 1860 40 

Abnormal 43 1098 

 

Table-8 presents confusion matrix displaying 

classification results obtained from CNN model trained 

using Inception V3. 

 

Table-8. Confusion matrix of Inception V3 CNN model. 
 

 
TRUE CLASS 

Normal Abnormal 

PREDICTED 

CLASS 

Normal 1855 45 

Abnormal 51 1090 

 

The performance metrics presented in Table-9 

were derived from the calculations using the confusion 

matrix data of all models. 

 

Table-9. Showcases the performance metrics of all 

models, presented in percentage (%). 
 

 
 

Upon analyzing the performance metrics in 

Table-9, the ResNet152 CNN model demonstrates the 

highest classification success, achieving an impressive 

98.8% accuracy. Correspondingly, the ResNet152 CNN 

model exhibits the highest precision, recall, and F-1 score 

values, aligning with its high accuracy. Subsequently, 

examples of images correctly and incorrectly classified by 

the ResNet152 CNN model, showcasing exceptional 

classification success, can be observed. 

The superior performance of DenseNet201 and 

ResNet152 can be attributed to their deep architectures, 

which enable them to learn hierarchical representations 

and capture intricate thermal patterns associated with 

battery cell faults. The dense connectivity and residual 

connections in DenseNet201 and ResNet152, respectively, 

play a vital role in overcoming the vanishing gradient 

problem during training, facilitating the optimization of 

deeper models. 

While VGG19 and Inceptionv3 are also powerful 

CNN models, their performance was slightly lower in this 

specific task. VGG19's depth and computationally 

expensive layers may have led to a slower convergence 

rate, affecting its performance in comparison to 

DenseNet201 and ResNet152. Inceptionv3 modules might 

have struggled to fully capture complex thermal patterns, 

leading to marginally lower accuracy in fault detection. 

Overall, the study highlights the importance of 

selecting appropriate CNN architectures for specific tasks; 

as not all models perform equally well in thermal image-

based fault detection in battery cells. DenseNet201 and 

ResNet152 emerged as promising choices for this 

application, providing valuable insights for development 

of more efficient and exact fault detection methods in 

electric vehicles. Further research may involve fine-tuning 

the models or exploring ensemble approaches to achieve 

even better performance. 

 

CONCLUSIONS 

Through extensive experimentation and 

evaluation of each model's accuracy, precision, recall, and 

F1-score, we have gained a comprehensive understanding 

of their strengths and limitations. DenseNet201 

demonstrated the highest classification success, achieving 

an accuracy of 98.8%, making it the most effective model 

for fault detection. On the other hand, Inception v3 

exhibited outstanding precision, recall, and F1-score 

values, showcasing its ability to handle diverse thermal 

patterns effectively. 

Each CNN model exhibited unique advantages 

and trade-offs in terms of computational complexity, 

depth, and capacity to capture spatial features. 

DenseNet201 deep architecture excelled in intricate spatial 

feature extraction, while VGG19's simplicity and 

interpretability were notable strengths. 

Considering the findings, selecting the most 

appropriate CNN model depends on specific application 

requirements, computational resources, and the desired 

balance between precision and recall. The evaluation of 

these models can act as a basis for future research and 

guide the establishment of defect detection systems for 

lithium-ion battery cells in electric vehicles. 

Ultimately, our study highlights the significance 

of choosing an appropriate CNN model, fine-tuning its 
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parameters, and leveraging its strengths to enhance the 

safety and efficiency of battery cells in electric vehicles, 

contributing to the advancement of sustainable and reliable 

energy storage technologies. 
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