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ABSTRACT 

This study employs Thermogravimetric Analysis (TGA) to explore co-pyrolysis potential using polystyrene (PS) 

and coconut sawmill residue (CSR) for liquid fuel production. Two distinct degradation stages are observed in CSR-PS 

blends, mirroring pure CSR samples: the initial phase (200-400°C) decomposes biomass components, while the second 

stage (400-550°C) targets the synthetic polymer PS within CSR-PS blends. Analyzing thermal degradation parameters 

reveals insights. 100% PS exhibits the highest weight loss and activation energy, highlighting PS's formidable 

decomposition. Conversely, 100% CSR shows the lowest weight loss and activation energy due to its organic composition. 

Artificial Neural Network (ANN) modeling indicates varying correlation accuracies for different blend compositions. 

Surprisingly, 100% PS exhibits lower correlation accuracy in predicting weight loss compared to the 80% PS blend, which 

achieves a perfect correlation. Conversely, 100% CSR, with simpler decomposition, has the lowest correlation accuracy. 

These findings illuminate the complex thermal behavior of CSR-PS blends, emphasizing the distinct degradation 

characteristics of PS and CSR. Implications extend to material applications and disposal strategies, emphasizing tailored 

approaches based on blend compositions and thermal profiles. This research advances co-pyrolysis as a sustainable avenue 

for liquid fuel production, providing insights for future research and practical applications. 
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INTRODUCTION 
The increasing global population has created a 

growing demand for energy across various sectors heavily 

reliant on fossil fuels, including mechanical operations, 

construction, recreation, automotive, and product 

packaging [1]. Plastic, particularly polystyrene, has 

become an essential component in these industries, leading 

to a significant increase in plastic production and the 

accumulation of plastic waste [2]. Consequently, various 

methods for managing plastic waste have emerged, 

including thermochemical conversion, disposal, and 

recycling [8].  

Projections indicate a staggering circulation of 33 

billion tons of plastic between 1950 and 2050, driven by 

an annual increase of at least 10%. LDPE, PP, PS, and 

PET plastics are commonly found in municipal waste, 

with concerning estimates suggesting that a minimum of 8 

million MT/year of plastics end up in the oceans. The 

Philippines is among the top 10 countries contributing to 

the ocean's burden of mismanaged plastic waste. Illegally 

disposed waste, primarily comprised of plastics, infiltrates 

streams and eventually contaminates seas, causing severe 

harm to marine life and exacerbating environmental 

degradation [6]. 

One potent strategy to diminish our reliance on 

fossil fuels involves the application of pyrolysis-a process 

integral to the thermal degradation of biomass. Pyrolysis 

boasts the capability of producing low-temperature 

chemicals from a diverse array of fuels, notably converting 

biomass into bio-oil. Nevertheless, the quantity and quality 

of bio-oil generated through conventional biomass 

pyrolysis have often fallen short of meeting the 

prerequisites for fuel applications, as indicated in 

numerous studies [4]. 

Harnessing the potential of agricultural 

production and processing waste such as coconut sawmill 

residues as an energy resource is of paramount 

importance, given its propensity to substantially contribute 

to environmental pollution if not managed judiciously. 

Pyrolysis oil derived from diverse biomass sources 

exhibits the potential for deployment as a versatile fuel. 

Significantly, co-pyrolysis technology, particularly when 

involving synthetic polymers like plastics, enhances the 

properties of pyrolysis oil, augmenting both its quantity 

and quality [14]. 

The domain of co-pyrolysis technology harbors 

immense promise, and its modeling and optimization can 

represent a pivotal stride in mitigating waste disposal 

issues [12]. Remarkably, there exists a dearth of studies 

exploring the co-pyrolysis of coconut sawmill residue 

(CSR) and polystyrene (PS) plastic. 

Thermogravimetric analysis (TGA) stands as an 

invaluable instrument, extensively utilized to scrutinize the 

thermal characteristics of substances under varying 

heating environments. TGA facilitates the calculation of 

activation energy through the application of the Arrhenius 

equation [3]. 

In a parallel vein, numerous artificial neural 

network (ANN) models have been devised to simulate and 

predict co-pyrolysis characteristics [13]. While ANN 
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demonstrates formidable predictive prowess, it often 

operates akin to a "black-box" model. This research 

endeavors to harness the Arrhenius Law in conjunction 

with ANN to dissect the kinetics and thermal degradation 

behaviors of CSR and PS, culminating in a more holistic 

comprehension of the intricate interactions governing this 

system. 

 

MATERIALS AND METHODS 

 

Coconut Sawmill Residue and Polystyrene Feedstock 

Waste polystyrene (PS) and coconut sawmill 

residue (CSR) were gathered from multiple landfill sites 

for the study. To prepare these feedstocks for further 

analysis, they underwent a series of steps. Initially, the 

collected feedstocks were subjected to washing to remove 

any impurities and contaminants. Following this, the 

materials were air-dried to eliminate moisture content. 

To prepare for the subsequent analysis, additional 

processing was carried out on the feedstock. In particular, 

it underwent mechanical chopping or crushing, resulting in 

particles of approximately 1 millimeter in size to ensure 

the absence of temperature gradients during the process 

[9]. These reduced-size particles were subsequently 

employed in thermogravimetric analysis (TGA). 

The study incorporated a wide range of 

combinations involving coconut sawmill residue (CSR) 

and polystyrene (PS) proportions. These proportions 

included 0%, 20%, 40%, 60%, 80%, and 100%. This 

diverse set of combinations was chosen to facilitate an 

extensive and thorough examination of the thermal 

degradation characteristics and behaviors exhibited by 

these materials across varying conditions. 

 

Thermogravimetric Analysis of Different Samples of 

Coconut Sawmill Residue and Polystyrene Plastic 

The analysis of the degradation behavior of 

coconut sawmill residue (CSR) and polystyrene (PS), as 

well as their various percentage proportions, was carried 

out using a Perkin Elmer TG (Thermogravimetric) 

analyzer. The analyzer had a temperature range spanning 

from 30°C to 900°C, and a consistent heating rate of 10°C 

per minute was employed. The analysis was conducted in 

a controlled environment with the use of nitrogen (N2) 

gas, which was purged at a rate of 20 ml per minute. 

During each experimental run, the TGA analyzer 

recorded several key parameters, including: 

a) Time (min): The duration of the experiment in 

minutes. 

b) Temperature (°C): The temperature of the sample at 

various time points during the analysis. 

c) Calculated Activation Energy (kJ/mol): This 

represents the energy required for specific thermal 

degradation processes. 

d) Weight Loss (%): The percentage of weight lost by 

the sample as it underwent thermal degradation. 

To visualize and analyze the data obtained from 

these experiments, the Origin Lab software was employed. 

This software facilitated the creation of thermal 

degradation charts, enabling a more in-depth examination 

of the degradation behavior and characteristics of CSR and 

PS at different percentage proportions and temperatures. 

 

Using Values of Activation Energy 

In the evaluation of activation energy and the 

identification of multiple degradation mechanisms, a first-

order kinetic model was employed in conjunction with a 

synergy analysis approach [10]. Among the models used, 

two of them are represented by Equation 1 and Equation 2. 

These equations play a critical role in understanding the 

thermal degradation processes and mechanisms involved 

in the study. 

 

f(x) = 1-x                     (1) 

 

g(x) = -ln(1-x)        (2) 

 

In their research, Flynn & Wall (1966) applied 

the Arrhenius equation, as depicted in Equation 3, to 

compute the kinetics of first-order processes. In this 

equation: 

 dxdt = Ae(−EaRT)(1 − x)       (3) 

 

 Ea represents the activation energy (measured in 

joules per mole, J mol^-1). 

 A represents the collision coefficient (measured in per 

minute, min^-1). 

 R denotes the universal gas constant (with a value of 

approximately 8.314 joules per mole per kelvin, J K^-

1 mol^-1). 

The Arrhenius equation is a frequently employed 

tool for explaining how reaction rates in chemical and 

thermal degradation processes vary with temperature. It 

offers valuable insights into factors such as activation 

energy and reaction kinetics. 

Equation 4 is employed to describe the weight 

loss fraction (x) during a thermal degradation process. 

This equation relates x to the initial mass of the mixture 

(mi), the mass at an immediate time (mt), and the final 

mass (mf). 

Equation 5, on the other hand, is derived from 

integrating Equation 2 under conditions of a constant 

heating rate. This equation likely provides a mathematical 

representation of the relationship between temperature, 

time, and the extent of the degradation reaction, which is 

valuable in characterizing the behavior of materials during 

thermal degradation processes. 

 𝑥 = 𝑚𝑡−𝑚𝑖𝑚𝑓− 𝑚𝑖                                                (4) 

 𝑙𝑛 [−𝑙𝑛(1−𝑥)𝑇2 ] = 𝑙𝑛 [𝐴𝑅𝛽𝐸 (1 − 2𝑅𝑇𝐸 )] − 𝐸𝑅𝑇     (5) 
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In Equation 5, the first term on the right side 

represents the activation energy (Ea), while the second 

term represents the co-pyrolysis temperature range [10]. 

This equation provides a mathematical relationship that 

combines the activation energy with temperature-related 

factors to characterize the behavior of a system 

undergoing co-pyrolysis. 

To determine the activation energy, a common 

approach is to plot the values of ln(-ln(1-x)/T
2
) against 

1/T, where: 

 

 ln denotes the natural logarithm. 

 x represents the weight loss fraction. 

 T is the absolute temperature. 

This graphical representation allows researchers 

to extract the activation energy by analyzing the slope of 

the resulting plot. The activation energy is a crucial 

parameter in understanding the kinetics of a chemical or 

thermal degradation process. 

 

Artificial Neural Network Modelling 
During the training of the artificial neural 

network (ANN), various combinations of polystyrene (PS) 

percentages, specifically 20%, 40%, 60%, 80%, and 100% 

were employed alongside a 100% coconut sawmill 

residue. The ANN training exclusively utilized significant 

thermal degradation datasets to ensure the accuracy of the 

model. Visual Gene Developer 2.1 was the software 

employed for the ANN modeling. 

The neural network architecture used for all PS 

proportions adhered to a 3-4-4-1 topology, as illustrated in 

Figure-1. When designing a neural network, the challenge 

lies in selecting the optimal number of layers and neurons 

to achieve precise results. The degree of validity was 

employed to assess the accuracy of the artificial neural 

network model [11]. This architecture comprises three 

input nodes, four nodes in the first hidden layer, four 

nodes in the second hidden layer, and one output node. 

In this study, specific topology settings were established 

for the employed artificial neural network (ANN). The 

ANN was configured to manage three input variables and 

one output variable. To enrich the complexity and learning 

capacity of the ANN, two hidden layers were 

incorporated. The initial hidden layer consisted of four 

nodes, and this structure was mirrored in the second 

hidden layer, which also featured four nodes. These 

configuration choices played an indispensable role in 

shaping the architecture and structure of the ANN. 

Additionally, this study encompasses pivotal 

training settings for the artificial neural network (ANN). 

The learning rate was deliberately set at 1, and the 

momentum coefficient was meticulously fixed at 0.1. The 

Sigmoid transfer function was judiciously chosen for the 

ANN to optimize its performance. To maintain precision 

throughout the training phase, a stringent target error of 

0.00001 was prescribed. The threshold initialization 

followed a randomized approach, akin to the random 

method employed for initializing the weight factors. 

Furthermore, the analysis update interval was thoughtfully 

scheduled to occur at regular intervals of 500 cycles. 

Collectively, these thoughtfully chosen parameters 

provided the framework and conditions within which the 

ANN underwent training and evaluation in this research 

context. It is imperative to underscore that these 

parameters hold paramount importance in ensuring the 

accuracy and effectiveness of the artificial neural network 

throughout the study. 

 

 
 

Figure-1. ANN architecture. 

 

Before initiating the training process, the datasets 

underwent a crucial normalization procedure. This step 

was taken to ensure that the data fell within a standardized 

range, a practice known to enhance the efficiency of the 

training process. 

Throughout the training process, the neural 

network continuously adjusted its parameters until it 

reached the predefined target error, which, in this case, 

was meticulously set at 0.00001. This target error 

essentially acted as a benchmark for evaluating the 

network's performance and guided when the training 

process should conclude. 

In the concluding phases of the process, the 

predicted outputs generated by the trained neural network 

underwent a de-normalization step. This was executed 

once the network achieved the highest attainable 

regression coefficient. This coefficient serves as an 

indicator of the quality of predictions and their alignment 

with the actual data. 

When evaluating the results of the predicted 

percentage weight loss against the actual percentage 

weight loss achieved during neural network training, a 

higher regression coefficient, denoted by R^2, signifies a 

more optimized artificial neural network architecture. A 

heightened R^2 value implies that the neural network has 

effectively acquired the necessary knowledge to make 

precise predictions, thus underscoring the success of the 

training process. 

 

RESULTS AND DISCUSSIONS 

 

TGA Datasets Generated 
As depicted in Figure-2, the thermal degradation 

of CSR-PS blends exhibited a distinctive behavior 

occurring in two stages, specifically within temperature 
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ranges of 200 to 400 degrees Celsius and 400 to 550 

degrees Celsius. 

The peaks identified during the initial degradation 

stage corresponded to the breakdown of hemicellulose, 

cellulose, and lignin. These constituents are frequently 

present in biomass materials and undergo thermal 

decomposition within this temperature range (Im et al., 

2022). In contrast, the peaks observed during the second 

degradation stage were linked to the decomposition of the 

PS plastic component. This stage is marked by the 

deterioration of the synthetic polymer. 

This two-stage degradation profile provides 

valuable insights into the thermal behavior of CSR-PS 

blends, highlighting the distinct processes involved in the 

degradation of both biomass and plastic components 

within the blends. Understanding these thermal 

degradation stages is crucial for optimizing the utilization 

of such blends in various applications. 

 

 
 

Figure-2. Coconut sawmill residue (CSR), and different 

CSR-PS proportions TGA curves. 

Table-1 presents essential data derived from the 

TGA (Thermogravimetric Analysis) curves, focusing on 

significant thermal degradation parameters such as time, 

temperature, activation energy, and weight loss. Here are 

some key observations from the table: 

a) Highest percentage weight loss: The highest 

percentage of weight loss, reaching 76.18%, was 

recorded under the conditions of 100% PS. This 

occurred at a specific time of 41 minutes and a 

temperature of 419.94°C. The corresponding 

activation energy for this degradation process was 

notably high, at 333.20 kJ/mol. 

b) Lowest percentage weight loss: In contrast, the 

lowest percentage of weight loss, amounting to 

16.73%, was recorded when dealing with 100% CSR, 

and this occurred within a 34-minute timeframe. 

c) Activation energy differences: The activation energy 

values vary significantly between the different 

materials. For instance, the thermal decomposition of 

100% PS yielded the highest activation energy, likely 

due to the specific compounds present in polystyrene. 

Conversely, 100% CSR exhibited the lowest 

activation energy at 77.20 kJ/mol, mainly attributed to 

its organic components. 

These findings underscore the diverse thermal 

degradation characteristics of polystyrene (PS) and 

coconut sawmill residue (CSR) and provide insights into 

the energy requirements for their decomposition processes. 

Such information is valuable for understanding the 

behavior of these materials under varying thermal 

conditions and can inform their practical applications and 

disposal strategies. 

 

Table-1. Thermal degradation highest results. 
 

 

Polystyrene 

Proportion 

(%) 

Coconut Sawmill 

Residue 

Proportion (%) 

Time (min) 
Temperature 

(°C) 

Activation 

Energy 

(kJ/mol) 

Weight loss 

(%) 

1 20 80 43 439.94 88.05 19.43 

2 40 60 42 429.94 126.05 23.86 

3 60 40 43 439.94 149.46 31.96 

4 80 20 42 429.94 248.07 54.98 

5 100 0 41 419.94 333.20 76.18 

6 0 100 34 349.94 77.20 16.73 

 

Predicted Versus Actual % Weight Loss Comparison 

According to the data presented in Table-2, the 

highest regression coefficient was achieved with 80% PS, 

while the lowest coefficient was recorded for 100% CSR, 

standing at 99.03%. These results were obtained within a 

total training processing time of 10 minutes. Figures 3 

through 8 depict scatter plots illustrating the relationship 

between predicted and actual weight loss values across 

various percentage proportions, all of which are based on 

the ANN modeling. 
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Table-2. Regression analysis per processing time. 
 

 
Polystyrene 

Proportion (%) 

Coconut Sawmill Residue 

Proportion (%) 

Regression 

Coefficient (R
2
) 

Processing 

Time (minutes) 

1 20 80 99.1 10 

2 40 60 99.78 10 

3 60 40 99.16 10 

4 80 20 100 10 

5 100 0 99.78 10 

6 0 100 99.03 10 

 

 
 

Figure-3. Predicted versus actual plots for %weight loss  

in 20%PS. 

 

 
 

Figure-4. Predicted versus actual plots for %weight loss  

in 40%PS. 

 

 
 

Figure-5. Predicted versus actual plots for %weight loss  

in 60%PS. 

 

 
 

Figure-6. Predicted versus actual plots for %weight loss  

in 80%PS. 
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Figure-7. Predicted versus actual plots for %weight loss  

in 100%PS. 

 

 
 

Figure-8. Predicted versus actual plots for %weight loss  

in 100%CSR 

 

ARTIFICIAL NEURAL ANALYSIS 

During the neural analysis of each percentage 

proportion, it becomes evident that we can visualize the 

synaptic weights associated with every neuron within each 

hidden layer of the neural network. Figures 9 to 14 provide 

a graphical representation of these weights, offering 

insights into network behavior. Visual Gene Developer 

offers an intuitive graphical interface for users to explore 

the trained network visually. 

In this graphical representation, lines are 

employed to depict weight factors, while circles (nodes) 

represent threshold values. This visualization employs a 

color scheme to convey critical information: 

The red color signifies a high positive number, 

indicating a robust positive weight factor. In contrast, the 

violet color denotes a high negative number, indicating a 

substantial negative weight factor. 

The width of the lines is directly proportional to 

the absolute value of the weight factor or threshold value, 

offering a visual representation of their relative 

significance. 

This visualization technique serves as a valuable 

tool for enhancing comprehension of the neural network's 

architecture, the strength of connections (weights), and the 

influence of individual neurons on the overall behavior of 

the network. It greatly aids in deciphering the inner 

workings of complex neural networks. 

 

 
 

Figure-9. ANN Analysis for 20%PS. 

 

 
 

Figure-10. ANN Analysis for 40%PS. 
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Figure-11. ANN Analysis for 60%PS. 

 

 
 

Figure-12. ANN Analysis for 80%PS. 

 

 
 

Figure-13. ANN Analysis for 100%PS. 

 

 
 

Figure-14. ANN Analysis for 100%CSR. 

 

The outcomes generated by the neural networks 

are summarized in Table-4. Notably, despite 100% PS 

showing the highest percentage of weight loss and the 

highest activation energy, the results from the ANN 
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modeling indicate that it achieved a correlation accuracy 

of only 99.78%. In contrast, the configuration with 80% 

PS achieved a perfect correlation accuracy of 100%. 

Conversely, the lowest weight loss and activation 

energy, which were characteristic of 100% CSR, were 

consistent with its position as having the lowest 

correlation accuracy, standing at 99.03%. These 

correlation accuracy values were computed after de-

normalizing the predicted values obtained through 

simulation in the artificial neural network. 

 

CONCLUSIONS 

In conclusion, this study comprehensively 

investigated the thermal degradation characteristics of 

CSR-PS blends, uncovering a distinct two-stage 

degradation pattern reminiscent of that observed in 100% 

CSR samples. The initial stage corresponds to the 

decomposition of biomass constituents such as 

hemicellulose, cellulose, and lignin, taking place in the 

temperature range of 200 to 400 degrees Celsius. 

Conversely, the second stage entails the decomposition of 

the synthetic polymer, polystyrene (PS), present in the 

CSR-PS blends, occurring within the temperature range of 

400 to 550 degrees Celsius. 

 

 The analysis of thermal degradation parameters, 

including weight loss, activation energy, and time, has 

provided valuable insights. The highest percentage of 

weight loss was observed in 100% PS, with a 

corresponding high activation energy, highlighting the 

challenging nature of PS decomposition. On the other 

hand, 100% CSR exhibited the lowest weight loss and 

activation energy, reflecting its organic composition 

and easier thermal breakdown. 

 Additionally, the Artificial Neural Network (ANN) 

modeling demonstrated varying correlation accuracies 

for different blend compositions. Surprisingly, despite 

100% PS having the highest weight loss and 

activation energy, its correlation accuracy in 

predicting weight loss was lower than that of the 80% 

PS blend, which achieved a perfect correlation. 

Conversely, 100% CSR, with the lowest weight loss 

and activation energy, had the lowest correlation 

accuracy. 

These findings shed light on the complex thermal 

behavior of CSR-PS blends and the significant differences 

in the degradation characteristics of PS and CSR. Such 

insights are invaluable for applications involving these 

materials and can inform disposal strategies, emphasizing 

the need for tailored approaches based on the specific 

blend compositions and their distinct thermal profiles. 
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