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ABSTRACT 

The article presents the BM-UNet neural network architecture optimized for mobile devices. The article focuses 
on the possibility of real-time operation, takes into account various techniques for lightening the model, and provides a 
comparison with UNet-half. An improved model in terms of performance/accuracy ratio is applied in the algorithm of 
frame-by-frame segmentation of the flame on video, the result of which is averaged, and the optimal extinguishing point is 
found. For the latter, an approach to organizing a finite state machine is presented for switching between time-averaging 
windows for the possibility of timely response and minimization of mechanical losses of targeting. Combined, the method 
of frame-by-frame segmentation of flame contours and the algorithm for finding the center-mass point can be used in 
robotic flame extinguishing systems. 
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1. INTRODUCTION 

Fires are the most frequent natural and man-made 
accidents. The creation of means of robotic monitoring of 
the environment and timely prevention of fires is an 
important and urgent task today. Modern tools use 
expensive thermal imagers to detect flames. The 
disadvantage of the high price of the end device leads to 
the limitation of serial production of robots. A cheaper 
alternative is to use a standard video stream and advanced 
neural networks performing flame configuration extraction 
and targeting tasks. It is important to note that neural 
network algorithms contain a large number of matrix 
calculations. The development of modern mobile devices 
and the use of mobile GPU/NPU chips make it possible to 
carry out such calculations in real-time. This makes it 
possible to focus computing on compact mobile devices as 
the core elements of robotic tools, which is much better for 
environmental protection than running algorithms in 
cloud-based systems that are not available everywhere in 
forest areas. 

The article discusses the process of optimization 
of the existing method of multi-class flame segmentation 
based on the neural network model wUUNet [1], presented 
in Figure-1a. The main nuance of the application of this 
model is its high computational cost since it consists of 
two UNet blocks that perform segmentation of the binary 
flame signal (there is / no flame in a pixel) and a clarifying 
multi-class segmentation by color: red, orange, yellow 
flame. Multi-class segmentation is necessary to extract the 
hottest areas of the flame for optimal extinguishing [2-4], 
expressed through the color spectrum of combustion. The 
article presents an optimized version of the wUUNet 
model, called BM-UNet, shown in Figure-1b, in which the 
clarifying multi-class part of the neural network is 
represented by a single convolutional layer instead of the 
UNet model. The model undergoes further optimizations, 
in particular, a multiple reduction in the dimensionality of 
convolutional layers, and the use of addition operations 
instead of concatenation for the pass links of the UNet 
model. The comparison is made with lightweight UNet-
Half nets [5].  
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(a) 

 
(b) 

 
 

Figure-1. The wUUNet architecture and its optimal analogue, are presented in the article BM-UNet. wUUNet  
consists of combinatorially coupled blocks of binary (highlighted in blue) and multiclass (green) UNet,  

whereas in the BM-UNet model, one additional layer to the binary UNet model is allocated  
behind the multiclass part of the model. 

 
The result of the segmentation neural network is 

fed into an algorithm that searches for the extinguishing 
point as the center of mass along the largest contour of the 
average signal mask. For optimal operation of a robot that 
extinguishes by applying a jet of water to the source of 
flame, the targeting algorithm must minimize the detection 
of the target, which means giving the aiming point without 
delay, minimizing mechanical losses for aiming, and that’s 
mean stabilize the targeting point and respond to changes 
in the scene (movement of the video camera). These 
conditions are met by the finite state machine method of 
switching the state between the windows of averaging the 
flame signal over time.  
 
2. MATERIALS AND METHODS 

The problem of finding the contours of the flame 
in the video has been solved in the scientific community in 
various ways. In [6] an attempt was made to extract super-
pixel areas (by searching for zones of similar color) and 
then classify them. A visualization of this algorithm is 
shown in Figure-2a. Papers [7-10] are devoted to the 
search for framing rectangular areas of flame in video, i.e. 
the standard problem of detecting objects in an image is 
shown in Figure-2b. It is important to note that the flame 

object in the image has a non-convex contour, so the 
approximation of the contour with a framing rectangle is a 
rough approximation.  

The main type of task in the field of obtaining 
flame contours in an image is the segmentation problem, 
in which the image is classified pixel-by-pixel for flame 
detection.  

There are various modern neural network 
algorithms for segmenting objects in an image. The main 
classes of methods are UNet [11], and Deeplab [12, 13]. 
Advanced models in the field of segmentation in terms of 
accuracy are UNet++ [14], and UNet-FPN [15]. Among 
the lightweight variants is the UNet-half [1] approach to 
reducing the decoded level, which is also the basis of the 
BM-UNet model presented in the article. All of the above 
models are applied in comparison to the problem of 
multiclass flame segmentation. 

Papers [16-17] deal with the problems of binary 
segmentation of a flame, in which there is a binary contour 
of a fire without specifying its structure. The paper [2] is 
devoted to multi-class segmentation, in which the models 
of double UNet - UUNet and wUUNet - are presented. 
The result of this algorithm is shown in Figure-2c. 

  

 
(a) 

 
(b) 

 
(c) 

 

Figure-2. Types of machine vision tasks for solving flame detection problems in an image: a) extraction  
and classification of a super-pixel region, b) flame detection and localization by a framing  
rectangular area, c) pixel-by-pixel multi-class segmentation of flame contours in the video. 
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The BM-UNet architecture is a continuation of 
the idea of binary-multiclass flame segmentation by color 
with a bias towards computational optimization. Also in 
the paper [2] is a dataset consisting of red, orange, and 
yellow flame outlines marked by classes in images of real 
fires in forest and urban areas. It is used to train and 
compare the models presented in the article. For the 
training procedure of all models, the Adam optimization 
algorithm [18] and the method of stochastic gradient 
descent with restarts (SGDR) [19] are used every 250 
epochs. The total number of epochs is 2000.  
 
2.1 Mathematical Formulation of the Problem of  

      Multiclass Flame Segmentation in the Image 

Image segmentation is a classification task for 
each pixel of the image, forming a response matrix with 
the exact contours of the desired objects:  
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Algorithm A is selected for the image matrix I, 

which calculates the matrix characteristic S, each element 
of which is equal to either 0 (no object) or a positive value 
denoting the number of the object class in the task. The 
task searches for three classes of objects: red (1), orange 
(2), and yellow flame (3).  

The signal of the matrix S is decomposed into a 
basis-vector space of dimension n, in which 1 is placed in 

the component corresponding to the flame class (0 in all 
others): 
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To check the accuracy, the Jaccard metric [20] 

and its average variant for all n classes in the problem are 
used: 
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Here ),( jip

n
, is the probability of predicting an 

object n in the pixel [i, j], ),( jiy
n

 - is the labeled values of 
the actual object in the pixel.  

The best models are further optimized using the 
TF-Lite framework for better performance on mobile 
devices. The article presents optimization techniques such 
as: 
 
a) Use of sparse bundles [21] (Figure-3a)  
b) Constant value and multiple decrease in the 

dimensionality of convolutional layers (Figure-3b)  
c) Replacement of the concatenation operations of the 

model states in the throughput links of the UNet 
model with the addition operation (Figure-3c) 
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a) 
  

b) 

 
c) 

 

 

Figure-3. Ways to optimize the computational complexity of the UNet neural network model: a) the use  
of sparse convolutions, b) reducing the dimensionality of convolutional layers, c) replacing the  

concatenation operation with the addition of matrices in the neural network throughputs. 
 

Graphs of algorithm performance (frame 
calculation time) are demonstrated. The target is real-time 
performance at 25 frames per second (FPS) of video, 
which equates to 40ms per frame.  

The performance-optimal model is used to 
produce the outlines of the flame in the video stream, that 
is, the sequence of images that form an animated fragment.  
The S matrix as the output of the segmentation algorithm 
is used to compute the point of aiming at the source of the 
flame. In addition to the extinguishing point p, it is 
advisable to calculate the contour of the source of fire C in 
which it is located.  

To assess the quality of the selection of 
extinguishing points, average metrics are used in the 
video: 
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The article presents the following metrics:  

1. Presence of a flame signal in the frame: 
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2. Entry of the extinguishing point p into the target 

flame circuit C: 
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3. Flame class at the specified point, as an element of the 

matrix S':  
 

Ssq
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4. Displacement difference relative to the point in the 

previous frame:  
 

0,
0414 
 ttt
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    (11) 

 
The last metric is responsible for the stability of 

the extinguishing point p, relative to the frames of the 
video fragment. A high-quality point search algorithm 
corresponds to the maximum value of the metrics q1, q2, 
q3, and the minimum q4.  

From the response matrix of the flame signal S in 
the image, it is possible to form the contours of the fire 
using a recursive algorithm of 8-connectivity [22] of 
identical neighboring pixels around the current one. As a 
result of the algorithm's operation, a set of closed contours 
is obtained ]},{[},{ yxCC

k
 , each of which consists of 

many points on the boundary that uniquely describe the 
geometric representation of the contour. 
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On the contour C, the calculation of moments of 
order 0 and 1 is applied: 
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Based on the moments, you can determine the 

center of mass of the contour: 
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The area of the contour is its zero-order moment: 
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Thus, to find the optimal point of fire 
extinguishing, the contour of the maximum burning area is 
searched, and its center of mass is calculated: 
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A stable position of the target designation point is 

necessary for correct aiming at the source of the fire 
without additional changes in the mechanical movement of 
the muzzle of the water cannon and the associated energy 
costs. Since the flame is an object with a pronounced 
contour change in the video, it makes sense to consider the 
contour calculations over the averaged exponential 
moving average output of the S signal: 
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where λ - is the size of the averaging window depending 
on the characteristic of the number of frames per second 
and the specified averaging time τ in seconds: 
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On the averaged signal, a binarization (clipping) 

operation is performed according to the threshold 
9.0 : 
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Then calculations are made over )(tS  (12-15) to 
find the contour of the fire and the extinguishing point. 
The use of averaging reduces the fluctuation of the 
extinguishing point and reduces the value of the q4 metric 
depending on the size of the averaging window T.  

However, by increasing the averaging window T, 
the activation time (finding the extinguishing point) of the 
signal also increases.  

To eliminate this drawback, the finite state 
machine algorithm is used to switch the state between 
averaging schemes with different window values: 
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The state machine has the effect of switching to 

the next state of the average signal matrix (with a large 
window) in case the latter is activated, and resetting to a 
smaller averaging window in case of deactivation of the 
current one (if the source of fire disappears or the scene 
changes as a result of camera movement). A detailed 
comparison of the results of the methods is described in 
the next chapter. 
 
3. RESULTS 

 
3.1 Optimization of the Execution Time of Neural  

       Network Segmentation Models 

The section presents a comparison of modern 
methods for reducing the computational complexity of 
neural network models and their application to the 
problem of multi-class segmentation on a modern 
smartphone based on the Qualcomm Snapdragon 855 
processor.  

The first procedure for reducing complexity is the 
use of dilated convolutions [21], schematically shown in 
Fgure-3 a. This type of matrix layer produces a matrix that 
is 2k smaller than standard convolutional kernels. The 
model changes in structure and is subject to repeated 
training, the graphs of which are shown in Figure-4. The 
sparse convolution model (orange graph) shows lower 
accuracy than the standard model, which is also shown in 
Table-4. 
 

 
 

Figure-4. Comparison of convergence of training 
schedules of UNet models using standard and  

sparse convolutions. 
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Figure-5 shows the processing time of the frame 
by the model with standard and sparse convolutions. The 
sparse convolution model runs much slower on a mobile 

GPU than the standard ones. This is because the memory 
model of massively parallel systems provides block 
computing without sparse.  

 

  
a)     b) 

 

Figure-5. Performance comparison of models using ordinary and sparse convolutions. 
 

Table-1 shows the accuracy and speed of the 
models. Sparse convolutions are not suitable for 
optimizing the performance of segmentation neural 
networks of the UNet class. 
 

Table-1. Comparison of the accuracy of segmentation  
of UNet models. 

 

Model 
Accuracy 

IOU 
GPU time CPU time 

UNet 74.71% 128 ms 370 ms 

UNet-dilated 70.46% 2576 ms 477 ms 
 

In [2] it was found that the wUUNet neural 
network model shows the best results in terms of 
segmentation accuracy. This model consists of two UNet 
models and, accordingly, has a twofold increase in the 
number of operations, as indicated in Figure-1a.  

For the architecture, the optimal variant of 
binary-multiclass segmentation BM-UNet is presented, the 
clarifying multiclass part of which is reduced from the 
whole UNet model to one convolutional layer, which is 
demonstrated in Figure-1b. A comparison of models in the 
training procedure is shown in Figure-6a, and the 
execution time in the inference mode is in Figure-6b.  

 

  
a)      b) 

 

Figure-6. Comparison of accuracy (a) and performance (b) of UNet, wUUNet, and BM-UNet. 
 

The wUUNet model achieves high accuracy 
faster, but BM-UNet also converges to 75% accuracy. It is 
worth noting that with similar characteristics in terms of 
accuracy in the later epochs of training, the BM-UNet 

model works significantly faster than wUUNet and 
slightly slower (but much more accurately) than UNet, 
which is also demonstrated in Table-2. 

  
Table-2. Comparison of the segmentation accuracy of the UNet, BM-UNet, and wUUNet models. 

 

Model IOU (Multi-Class) IOU (Binary) Uptime 

UNet 74.71% 84.69% 128 ms 

wUUNet 76.14% 88.53% 299 ms 

BM-UNet 75.83% 88% 136 ms 
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The paper [1] presents the UNet-half architecture 
(Figure-7). This model applies a constant number of 
convolutional layer filters, applies matrix addition instead 
of concatenation, and reduces the decoding procedure to a 
single layer by scaling from all encoding levels to the size 
of the input image. Applying these features to the BM-
UNet model, we get the BM-UNet-half variant.  

Variants of models with a constant number of 
layers BM-UNet-64 and replacement of concatenation 

with the addition operation BM-UNet-64+ are taken into 
account. Training graphs of all models in comparison with 
the standard BM-UNet are shown in Figure-8. The 
convergence graph of variant 64+ is almost the same as 
that of the original model, which means that this variant is 
highly efficient and, in particular, the replacement of 
matrix concatenation operations with addition. 

 

 
 

Figure-7. The architecture of the neural network UNet-half. 
 

 
                                                              a)                                                                    b) 

 

 
c) 

 

Figure-8. Comparison of the convergence of BM-UNet training schedules with  
optimization options. 
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Figure-9 illustrates a significant reduction in 
frame processing time by applying a constant small 
number of convolutions in the W64 model layers. The half 

model is the fastest, but the w64+ model is not 
significantly inferior to the leader and is much faster than 
the model using w64 concatenation.  

 

  
a)      b) 

 

Figure-9. Comparison of the performance of BM-UNet methods and its optimized analogues. 
 

In Table-3 accuracy and speed characteristics are 
indicated. The fastest half model is the least accurate, 
while the w64+ model exhibits close accuracy 

characteristics to the original BM-UNet model, 
significantly outperforming it in speed. 

 
Table-3. Comparison of the segmentation accuracy of BM-UNet models. 

 

Model IOU (Multi-class) IOU (Binary) Uptime 

BM-UNet 75.83% 88% 136 ms 

BM-UNet-half 71.41% 83.97% 58 ms 

BM-UNet-64 75.14% 88.50% 80 ms 

BM-UNet-64+ 75.82% 86.50% 65 ms 
 

An additional step in optimizing the time of 
execution of the BM-UNet-64+ model is to halve the 
number of convolution filters in the layers, obtaining the 
BM-UNet-32+ model. Comparison graphs of the BM-
UNet-64(32)+ models are shown in Figure-10. The 
accuracy of the 64+ is better than that of the 32+, but at 
the end of the workout, the gap is significantly reduced by 
using the SGDR gradient descent restart method [19]. 
Figure-10b shows a three-fold difference in image 

processing time between the models. The dotted line at 40 
ms in Figure-15b shows the frame lifetime for a 25 FPS 
refresh rate frequently used in machine vision 
applications. Values below the dotted line correspond to 
the execution of the algorithm in real-time, which the 
smartphone copes with by segmenting the BM-UNet-32+ 
model. The results of the comparison of the models are 
shown in Table-4, which confirms the facts. 

 

 
a)      b) 

 

Figure-10. Comparison of training graphs (a) and execution time (b) of BM-UNet  
methods of dimension 64 and 32-layer convolutions. 
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Table-4. Comparison of segmentation accuracy of BM-UNet-64(32)+ models. 
 

Model IOU (Multi-class) IOU (Binary) Uptime 

BM-UNet-64+ 75.82% 86.50% 65 ms 

BM-UNet-32+ 73.26% 86.61% 20.5 ms 
 

Thus, within the framework of the procedure for 
optimizing neural network segmentation models, a 
recommendation for the use of the BM-UNet-32+ model 
in smartphones is indicated. 
 
3.2 Determining the Extinguishing Point Based on the  

      Segmentation of the Flame in the Video 

The output of the segmentation algorithm above 
the frame (the input image matrix) is a matrix of identical 
size, in which each element corresponds to the value of the 
presence or absence of a flame in it. To find the fire 
extinguishing point, the method of extracting the signal 
contours and the formula for finding the center of mass 
above the contour (12-15) are used. This approach is used 
both for the binary mask of the presence/absence of fire B 

and for the multi-class mask M, which specifies a specific 
class.  

For a binary signal, the search for the contour of 
the maximum size and its center is used. In the case of a 
multi-class signal, the prioritization of the choice of the 
flame contour on which the extinguishing point is located 
according to the flame class from red (lowest priority) to 
yellow (highest priority) is also taken into account, since 
the brighter the flame, the higher the temperature index it 
has, and therefore the source of energy.  

In Chapter 2, the q1,.., and q4 quality metrics for 
the selection of the extinguishing point are indicated, and 
for these search schemes, the indicators are indicated in 
Table-5. 

 
Table-5. Comparison of quenching point selection quality metrics. 

 

Metric 
Multi-class. Max. 

contour 

Binary. Max. 

contour 

Presence of a quenching point (q1) 99.98% 99.98% 
Getting the extinguishing point into the fire 

contour (q2) 
99.00% 91.93% 

Flame class at the extinguishing point (q3) 2.65 1.64 
The offset of the current point relative to the 

previous one (position stability, q4) 
17.31px 7.98px 

 
There is a two-fold improvement in the q4 metric 

in binary mode. This is due to two factors:  
Choosing a contour according to the flame class 

in a "greedy" way leads to the finding of "volatile" areas 
of yellow flame, and not the hearth, as shown in Figure-
11.  

Changing the selection of the extinguishing 
contour too often, due to the short time for the volatile 
area of yellow or orange flame to appear on the frame. The 
binary scheme takes into account the entire fire contour 
and the center of mass of the contour indicates the 
constant zone of the fire. This effect is also demonstrated 
in Figure-11.  

 

 
 

Figure-11. Visualization of contour selection (highlighted in white) and extinguishing  
point (white cross) in binary and multi-class approaches 
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A hybrid binary-multi-class scheme for selecting 
the extinguishing point eliminates the "jump" effect. The 
maximum fire contour is selected by a binary signal for 
the presence of flames. The search for flames in the 
selected binary path is carried out by a multiclass mask 
with priority toward the yellow and orange flame zones. 
For this purpose, formula (12) is used in its generalized 
description with the introduction of the physical concept 
of density ρ: 
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In the first case, ρ is the scalar value of the multi-

class signal matrix M in the region of the circuit C: 
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Given the uneven distribution of the flame pixels 

of the different colors indicated in Figure-12. a and the 

importance of determining the hottest (yellow) section of 
the flame as the target of the gun, the density of orange 
and yellow flames should be much higher than that of red. 
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To define the functions 81,9,1 , a geometric 

representation of the pixel matrix was used, shown in 
Figure-12b. On the left for a, the density corresponding to 
the germination area of the pixel boundaries is visualized 
(1x1 for red, 3x3 for orange, 5x5 for yellow flame). On the 
right for b is the density according to germination for 
orange flame, and squaring for yellow. Thus, the 
displacement of the geometric center of mass of the binary 
contour towards the zone of a hotter flame is achieved, as 
shown in Figure-13. 

 

 
 

a)      b) 
 

Figure-12. The average distribution of flame pixels on Gorenje video (a) and visualization of  
the signal density function p for pixels of red, yellow, and orange flames. 

 

 
3,2,1  

 
25,9,1  

 
81,9,1  

 

Figure-13. Visualization of the selection of the extinguishing loop point for the hybrid scheme 
(highlighting the common flame contour and finding the center of mass point). 

 
A comparison of binary, multi-class, and hybrid 

schemes is presented in Table-6. The multi-class variant 
shows the best indicators of the center point hitting the 
flame circuit (q2) and the average flame class at the center 
of the mass point (q3). However, the point shift from frame 

to frame (q4) is much higher than that of the rest of the 
circuits, which is unacceptable for flame guidance 
systems. 

A hybrid scheme with low densities works 
similarly to a binary scheme, and a hybrid scheme with 
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high densities of orange and yellow flame works similarly 
to the values of a multi-class scheme, except for the value 
of the extinguishing point offset metric (q4). For all hybrid 

schemes, it is significantly smaller, which allows us to 
eliminate the main drawback of the multi-class scheme 
and consider only binary and hybrid schemes in the future. 

 
Table-6. Comparison of quenching point selection quality metrics. 

 

Pattern q1 q2 q3 q4 

Multi-class 99.98% 99.00% 2.65 17.31px 

Binary 99.98% 91.93% 1.64 7.98px 

Hybrid 3,2,1  99.98% 91.62% 1.70 7.89px 

Hybrid 25,9,1  99.98% 92.65% 1.81 8.49px 

Hybrid 81,9,1  99.98% 92.55% 1.86 9.16px 
 

To stabilize the targeting point, the result of 
flame segmentation from frame to frame is averaged using 
a moving average. For binary and hybrid schemes, the 
averaging windows are set to τ = 0.1, 0.25, 0.5, 1, 2.5, and 
5 seconds (17). In the case of a binary scheme, S = B of 
formulas (16) and (18). The resulting average EMAB mask 
is binarized at the threshold β = 0.9 and the clipped signal 
(above the threshold) is used to find the contour and point 
of the center of mass. For the hybrid scheme, the search 
for the largest contour is also carried out using the 
binarized EMAB mask. By extracting the maximum 
contour of the fla, the point of the center of mass in it is 
searched using the average density of the formula (21).  

A comparison of the time-averaged τ of binary 
and hybrid schemes is shown in Table-7. There is a 
decrease in the value of the metric of the presence of the 
extinguishing point in the frame (q1) with an increase in 
the averaging time τ. This is due to the lag in the detection 
of the extinguishing point due to the accumulation of a 

signal to exceed the threshold β = 0.9. To mitigate this 
effect, the following is a demonstration of how to use a 
state machine to switch states between averaging 
windows.  

The presence of averaging contributes to an 
increase in the quality of the metric of the extinguishing 
point entering the flame circuit (q2). For τ values between 
0.1 and 1 second, q2 has similar values. With averaging 
window values of 2.5 and 5 seconds, the q2 metric is lower 
than in the range of 0.1 to 1 second, but much higher than 
in the scheme without averaging. Averaging helps to filter 
areas of flame (tongues) that vary greatly from frame to 
frame, without delaying the point of aiming at the source 
of the fire. This effect is demonstrated in Figure-14, 
where, in the first line without averaging, the targeting 
point moves much more strongly than in the schemes of 
the small and large averaging windows, in the second and 
third rows, respectively.  

 

 
 

Figure-14. Visualization identification of the averaged flame contour with the  
designation of the center of mass. 
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Table-7. Comparison of flame moving average signal schemes. 
 

Window size  τ Method q1 q2 q3 q4 

τ = 0s  
(without 

averaging) 

Binary 99.98% 91.93% 1.64 7.98px 

Hybrid ρ1,2,3 99.98% 91.62% 1.70 7.89px 

Hybrid ρ1,9,25 99.98% 92.65% 1.81 8.49px 

Hybrid ρ1,9,81 99.98% 92.55% 1.86 9.16px 

τ = 0.1с 

Binary 96.40% 93.76% 1.69 5.66px 

ρ1,2,3 96.40% 93.60% 1.74 5.58px 

ρ1,9,25 96.40% 94.13% 1.83 5.83px 

ρ1,9,81 96.40% 94.12% 1.88 6.07px 

τ = 0.25с 

Binary 92.44% 94.60% 1.72 4.04px 

ρ1,2,3 92.44% 94.46% 1.77 3.99px 

ρ1,9,25 92.44% 94.13% 1.85 4.12px 

ρ1,9,81 92.44% 94.12% 1.90 4.26px 

τ = 0.5с 

Binary 91.08% 94.54% 1.75 3.16px 

ρ1,2,3 91.08% 94.65% 1.79 3.13px 

ρ1,9,25 91.08% 94.31% 1.87 3.20px 

ρ1,9,81 91.08% 94.13% 1.90 3.29px 

τ = 1с 

Binary 81.87% 94.16% 1.75 1.66px 

ρ1,2,3 81.87% 94.24% 1.80 1.63px 

ρ1,9,25 81.87% 93.61% 1.85 1.63px 

ρ1,9,81 81.87% 93.74% 1.88 1.65px 

τ = 2.5с 

Binary 69.82% 93.42% 1.81 0.86px 

ρ1,2,3 69.82% 93.47% 1.84 0.84px 

ρ1,9,25 69.82% 92.29% 1.87 0.83px 

ρ1,9,81 69.82% 92.08% 1.89 0.82px 

τ = 5с 

Binary 52.30% 92.93% 1.78 0.66px 

ρ1,2,3 52.30% 92.45% 1.78 0.64px 

ρ1,9,25 52.30% 91.01% 1.80 0.63px 

ρ1,9,81 52.30% 90.48% 1.80 0.63px 
 

For the metric of the average value of the flame 
class at the targeting point (q3), it is important to note the 
following fact. It has been found that as the averaging time 
increases, the value of the q3 metric for a binary scheme 
increases to the values of a hybrid scheme. This means 
that at the signal point of the largest time-averaging 
window, there is a steady source of flame in color, more 
often bright (yellow) than dark (red), and the brightness 
value correlates with the temperature of the fire. Thus, it is 
important to be able to find the source of fire energy using 
the methods of clarifying multi-class segmentation of fire 
by color, which is also demonstrated in Figure-14 for a 5-
second averaging scheme (3rd frame line).  

Considering the smallest mean displacement of 
the center of mass point (q4), for the small averaging 
window τ, the best (smallest) value is obtained for the 

binary and hybrid scheme with a low density of orange 
and yellow flames. But with the growth of τ, hybrid 
schemes with large values of yellow and orange flame 
densities, such as and 81,9,1 , show better results. This 

means that over a long period, the source of the fire has 
predominantly yellow and orange flame zones. In the 
focus, the targeting point is more stable and has a smaller 
spread, as it is "attracted" to the zones of high-temperature 
yellow and orange flames due to the high density of the 
latter in the schemes 25,9,1  and 81,9,1 .  

Schemes with an averaging window have the 
effects of late detection of the flame contour (shown in 
Figure-15) and a delayed response to background changes 
as a result of camera rotation (shown in Figure-16). These 
effects are especially noticeable at large values of the 
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averaging window, but the frame-by-frame representation 
in Figures 15 and 16 can also be seen for small windows.  

The solution to these problems is a multi-window 
scheme of flame averaging with state switching by the 
finite state machine method. There are two types of state 
switching: activation - switching to the next averaging 

window if a flame contour appears on it, and deactivation - 
switching to the previous averaging window if it detects 
the absence of flame on the current one. The mathematical 
formulation of this algorithm is represented by formulas 
(19, 20). 

 

 
 

Figure-15. Visualization of the effect of the delayed reaction to the appearance of a  
flame at the beginning of the video for a scheme with averaging, compared  

to a circuit without it and a state machine. 
 

 
 

Figure-16. Visualization of the effect of the loss of the average flame zone when the  
the video camera is rotated for a non-averaging circuit, with averaging and a  

finite state machine. 
 

The results of the finite state machine method are 
shown in the lower part of Figures 15 and 16. At the stage 
of the beginning of flame detection in Figure-15, the 
diagram immediately gives the result of the detected flame 
in the form of a contour and an extinguishing point 
without averaging. The 0.1-second averaging scheme 
accumulates the signal above the cut-off fault only by 
frame 6, and the state machine circuit uses the unaveraged 
result of the scheme up to that frame (highlighted in blue) 

and then activates the averaging circuit (highlighted in 
green).  

At the stage of changing the background and 
deactivating the state machine signal, shown in Figure-16, 
up to 6 frames, the result of the circuit with 1 second 
averaging is used, and then with 0.5 seconds as a result of 
the absence of a signal on the first frame.  

Table-8 shows a comparison of state machine 
methods for binary and hybrid schemes of different 
densities. A hybrid scheme with density shows the best 
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metric values on average. A comparison of schemes 
without averaging, with a constant averaging window and 
a finite state machine for density switching is presented in 
Table-9. The value of the state machine mean offset (q4) of 

2.48px is higher than the values with large averaging 
windows of 0.83 and 0.63px, respectively. This increase is 
due to the use of small averaging time windows in the 
initial phase of the algorithm. 

  
Table-8. Comparison of quality metrics for the selection of extinguishing points of the  

finite machine method of binary and hybrid flame detection schemes. 
 

Method q1 q2 q3 q4 

Binary 98.83% 94.76% 1.72 2.46px 

Hybrid 3,2,1  98.83% 94.70% 1.74 2.43px 

Hybrid 25,9,1  98.83% 93.74% 1.77 2.48px 

Hybrid 81,9,1  98.83% 93.24% 1.79 2.54px 

 

Table-9. Comparison of quality metrics for the selection of quenching points of previously  
considered averaging variations of the hybrid p1,9,25 flame detection scheme. 

 

Method q1 q2 q3 q4 

τ = 0 99.98% 92.65% 1.81 8.49px 

τ = 0.1 96.40% 94.13% 1.83 5.83px 

τ = 0.25 92.44% 94.13% 1.85 4.12px 

τ = 0.5 91.08% 94.31% 1.87 3.20px 

τ = 1 81.87% 93.61% 1.85 1.63px 

τ = 2.5 69.82% 92.29% 1.87 0.83px 

τ = 5 52.30% 91.01% 1.80 0.63px 

Finite machine 98.83% 93.74% 1.77 2.48px 

 
A graph of the extinguishing point displacement 

metric relative to time for schemes without averaging, 
with a small averaging window (0.5 seconds) and with a 
finite state machine is shown in Figure-17. The state 
machine diagram shows high displacement values on the 
left side of the graph, decreasing with increasing time, i.e. 

shifting the graph to the right. At a later stage, the offset 
becomes smaller than the constant averaging scheme. This 
is due to the adaptability of the state machine method, by 
switching the state to an average frame with a large 
window in which only the flame is displayed and the 
"tongues" are filtered. 
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Figure 17. Graphs of the amount of extinguishing point offset between frames for the 
schemes: unaveraged (light gray), averaging (dark gray), and finite state machine of  
the set averaging schemes (black), showing the effect of decreasing the value of the  

offset function of the state machine method, with an increase in the number  
of video frames. 

 
The finite state machine circuit, despite the high 

offset values, detects the flame signal without delay after 
detection, which is also shown in Figure-18 compared to 
the scheme with a large averaging window.  

 

 
 

Figure-18. Graphs of the magnitude of the displacement of the extinguishing point between  
frames for the schemes: unaveraged (light gray), averaging (black), and finite state machine  

of the set averaging (dark gray), showing the elimination of the delayed response of the  
finite state machine method in comparison with a large averaging window. 

 
In this way, the finite state machine method for 

switching averaging schemes is fast feedback from the 
observed appearance of the flame in the video, adaptable 
to minimize the movement of the water cannon, and 

resistant to changes in the scene in the form of moving or 
rotating the videographer.  
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4. CONCLUSIONS 
The article provides a practical comparative 

analysis of flame segmentation models in video and 
algorithms for finding the optimal fire extinguishing point, 
using a compact mobile device as an autonomous 
computing node. An optimized version of the BM-UNet-
32+ binary-multiclass architecture demonstrates high 
accuracy, with optimal computational costs for real-time 
mode, and is applicable as a model operating on a water-
cannon device.  

Based on this model, averaging schemes for 
segmentation results have been designed, within the 
framework of which a hybrid binary-multiclass finite state 
machine of averaging schemes based on odds shows 
satisfactory results in quality metrics and can be used in 
the software of a water cannon robot. 
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