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ABSTRACT 

Organizations in the current digital era are exposed to a variety of cybersecurity threats that can often result in 

financial losses and harm to their reputation. Among these threats, ransomware attacks can cause significant damage. 

Attackers are constantly improving their techniques to bypass security channels, which makes it challenging to monitor and 

detect the patterns of attacks. Consequently, there is a growing inclination towards employing state-of-the-art techniques to 

identify and defend during ransomware attacks. Deep learning is a proven technique that can be employed to learn from 

large complex patterns. However, large datasets are required in the training of deep learning models which is a challenging 

task. Few-shot learning (FSL) overcomes this limitation by using less data. In this research work, a Siamese network 

design is developed by incorporating the architectural principles of AlexNet and features of the VGG configuration. The 

employed methodology enables us to evaluate the inherent resemblances and disparities in the data. This novel 

methodology demonstrated exceptional performance, with an average accuracy of 97% when compared to various effects 

and learning rates. The results of the presented study demonstrate the capacity to greatly enhance cybersecurity by 

providing a scalable and effective approach for detecting ransomware.  
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1. INTRODUCTION 

In 2022, there was a concerning surge in 

ransomware assaults inside the digital security domain. 

According to studies, over 70% of organizations 

experienced cyber intrusions, marking a significant 

increase when compared to the previous five years 

statistics [1]. This phenomenon not only underscores a 

substantial economic strain on enterprises but also 

engenders apprehensions over prospective security 

breaches. This serves as a reminder of the need to 

implement more efficient strategies to mitigate and 

identify potential risks to information systems. 

Numerous strategies and approaches have been 

investigated by researchers and cybersecurity specialists to 

enhance the capabilities of ransomware detection. The 

methodologies encompass dynamic, behavioral, and static 

approaches that employ machine learning, deep learning, 

and hybrid models. While machine learning is effective in 

classifying tasks with lower complexity and deep learning 

is effective in finding patterns and behavior, it is important 

to note that these models may exhibit underfitting and 

limited generalization when faced with little data. Hence, 

within this particular context, several learning approaches 

are examined in the subsequent sections. 

Few-shot learning is a nascent methodology that 

emphasizes the capacity of models to acquire and leverage 

knowledge from a limited amount of data, sometimes 

referred to as "shots." This approach addresses the 

challenges associated with acquiring knowledge from 

limited data and incorporates methodologies such as 

transfer learning and meta-learning [2]. 

Transfer Learning is a subfield within the realm 

of deep learning that leverages the acquired knowledge 

from addressing a particular problem to address another 

problem that is closely related. This strategy is beneficial 

in situations where there is a scarcity or high cost of data 

available for the specific problem at hand. As an 

illustration, a model that has undergone training using an 

extensive dataset of photos can acquire characteristics, 

including edges, forms, and textures, which can 

subsequently be utilized in diverse image identification 

endeavors. By implementing this approach, the training 

procedure can be expedited, leading to enhanced model 

performance in situations where the availability of target 

data is limited. 

Meta-learning, sometimes known as "learning to 

learn", is a widely recognized technique. The primary aim 

of this endeavor is to enhance the capacity of machine 

learning models to acquire knowledge rapidly and 

effectively through experiential learning [3]. This is 

accomplished by training the model on a diverse range of 

activities, enabling it to effectively apply its knowledge to 

novel and unfamiliar tasks using limited data. 

The primary objective of metric learning is to acquire 

knowledge about the similarities between pairs of inputs 

within a dual network, often a Siamese network, by 

utilizing a distance function [4]. 

The structure of this article is being highlighted 

further. Section 2 covers a thorough examination of the 

existing methods for identifying ransomware, provided 

through a comprehensive literature review followed by a 

gap analysis. In section 3, we comprehensively elaborate 

the analysis of the accessible dataset, and the method of 

data preprocessing, encompassing the underlying 

transformation logic. The novel model is proposed with a 

blend of techniques, offering a thorough exposition of its 

developmental procedure. The implementation of 

technical attributes and factors have also been taken into 
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account, along with the conversion of the conceptual 

framework into a functional model. The section further 

shows the findings of the performance evaluation of the 

proposed model that are presented in the testing and 

validation sections. Subsequently, section 4 encompasses 

the discussion on results that display significant insights 

through the analysis of the model and its outcomes. 

Moreover, it facilitates a comparative evaluation of its 

performance. Finally, we conclude the study in section 5 

by effectively summarising the significant contributions 

and implications of this study. We offer valuable 

perspectives on the wider importance of the work and 

suggest possible areas for future investigation, so adding 

to the continuing scholarly conversation on the subject.  

 

2. LITERATURE REVIEW 

To learn and understand patterns, there are three 

common ways in machine learning namely, supervised 

learning, semi-supervised learning, and unsupervised 

learning. Supervised learning models learn from labeled 

samples and attempt to predict unlabeled samples. These 

models are evaluated based on their ability to accurately 

predict the output and input and are widely used for 

classification and regression tasks [5].  

Semi-supervised learning, as the name implies, is 

used when labeled data is expensive or difficult to obtain. 

In this approach, a small amount of labeled data is used to 

help categorize a large amount of unlabeled data [6]. 

Unlike the first two models, unsupervised learning is used 

to capture the intrinsic structure and underlying common 

patterns in a given dataset. This method groups data based 

on a particular property, without the use of labeled data 

[7].  

With the increasing frequency of cyber security 

attacks, there is a growing demand for intelligent models 

to mitigate malicious program proliferation. To address 

this, several artificial intelligence models have been 

proposed, including machine learning, deep learning, and 

hybrid models. In cyber-attack prevention and mitigation, 

machine learning models are widely adopted for their 

effectiveness and promising results [8]. Parkar and 

Bilimoria [9] highlighted the trends of effective machine-

learning models and techniques in detecting ransomware. 

Sharma et al., [10] discussed the limitations of supervised 

learning, which heavily relies on anti-virus vendors to 

provide explicit labels. They proposed a clustering-based 

unsupervised machine learning approach that addresses 

the mislabeling of targets and detecting unknowns.  

Another approach proposed by Khammas [11], 

uses frequent pattern mining to extract features from the 

raw byte. They claim an increase in the detection speed. 

Hwang et al., [12] used random forest and a model called 

Markov to produce a pipelining model on Windows API 

calls to capture the behavior of the ransomware.  

Yilmaz et al. [13] conducted a study on a single 

variant of ransomware that causes a screen splash in a 

controlled environment with 538 participants. The aim 

was to measure the adaptability of best practices. Faghihi 

and Zulkernine [14] studied ransomware related to 

smartphones and proposed decrypting tools capable of 

recovering lost data without compromising privacy.  

Sreelaja N. K. [15], proposed a signature-based 

model that uses fuzzy hashing and ClamAV methods to 

detect ransomware. However, the effectiveness of this 

technique is limited when dealing with novel attacks. For 

the dynamic approach, Ramesh and Menen [16] proposed 

a method to monitor changes in resource utilization, 

persistence, and lateral movement using a finite state 

machine learning model to identify ransomware attacks. 

 

 
 

Figure-1. Ransomware features utilized in the 

existing techniques. 

 

There are various hybrid techniques for machine 

learning, such as the double-layered hybrid approach 

which combines the Naive Bayes and SVM classifiers. A 

related approach is developed by Wisanwanichthan and 

Thammawichai [17] to capture underlying patterns 

effectively. Another study by Mercaldo [18] explored API 

calls for ransomware threats using a hybrid approach that 

combined static and dynamic analysis. Jung and Won [19] 

stated that file entropy is an effective feature value that 

can help differentiate between ransomware and benign 

wares. The features of ransomware behavior that were 

used for detection purposes are illustrated in Figure-1. 

 

2.1 Gap Analysis  

Deep learning models often use convolutional 

neural networks (CNNs) as a base network to which other 

techniques can be added for classification. In [20], deep 

learning trends, meta-learning implementations, and 

challenges are discussed, along with possible ways to 

mitigate them. Mascarenhas and Agarwal [21] provide a 

concise review of several implementations of CNNs, 

ranging from AlexNet [22] and its variants, to VGG [23] 

and its variants, RestNet [24], and Inception models [25]. 

These models are often used for transfer learning due to 

their effectiveness in image recognition. However, the data 

needs to be transformed and converted to suit such 

models. 

The idea of converting one-dimensional data into 

two-dimensional data to detect and classify malicious 
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content using convolutional neural networks has been 

explored in various research studies such as [26], [27], 

[28] and [29]. These studies used deep learning models 

and transfer learning techniques like freezing and fine-

tuning. In this paper, the same approach is adopted to 

improve detection accuracy and bridge the gap between an 

ineffective model by providing an effective one.  

Cui et al., [30] utilized the conversion of 

malicious code into grayscale and processed it using CNN 

images. Siamese Networks are a type of deep learning 

model that excels at metric learning and can learn to 

measure similarity between pairs of inputs. The 

architecture of Siamese Networks consists of two identical 

subnetworks that share weights and reduce bias. This 

architecture is incredibly useful in various applications, 

including differentiating data, making it a valuable tool in 

the presented case. Table 1 summarizes some literature on 

the state-of-the-art and its limitations. 
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Table-1. Literature review works with their limitations. 
 

Reference Proposed Method Added value Accuracy Limitations 

[11] 

A simple static 

analysis as opposed to 

the complex dynamic 

analysis of 

ransomware detection 

Feature extraction from raw bytes 

using frequent pattern mining to 

improve detection speed. Gain 

ratio technique used for feature 

selection. 

97.74% 

Static detection has several limitations, resulting in 

higher False Positive Rate (FPR) and False 

Negative Rate (FNR). This can cause a significant 

problem as it can negatively impact the efficiency 

of any algorithm. The paper lacks clarity on several 

aspects such as the absence of a confusion matrix 

or the rate of FP and FN. Additionally; it is unclear 

how the proposed paper tackles the challenge of an 

unseen dataset or attack. 

[12] 

A two-stage mixed 

ransomware detection 

model, Markov model, 

and Random Forest 

model  

A sequential characteristic of 

Windows APIs by building 

Markov models.  

Statistical machine learning 

techniques using Windows API 

call. 

Contribute to a mixed two-stage 

detection method with a strong 

focus on controlling false negative 

error rates (FNR) under nominal 

control of false positive error rates 

(FPR). The dataset used is from 

http://virusshare.com and 

http://en.softonic.com.  

97.3% 

The accuracy needs to be improved. 

Using deep learning techniques, accuracy might be 

improved  

[31] CNN-based detection.  

CNN out-performed SVM in 

Windows OS using:  

Contagio, Open Malware, 

VirusTotal Datasets 

87.9% on 

Windows 

59.0% of 

mobile 

The model does not help in detecting or preventing 

the system directly but rather an algorithm is used 

to prevent the propagation of infection from one 

system to another. This tool may be helpful in 

distributed systems and connected peer-to-peer 

systems or the transfer of information using USB 

and other file transfer hardware. 

[32] 
Process behavior 

analysis using RF  

RF model was proposed to detect 

zero-day attacks. Built the 

deataset. 

75% 
The accuracy indicates that there is still room for 

improvement.  

[33] 

Deep learning-based 

detector (DeepRan) 

Using BiLSTM-FC in 

an enterprise network 

using host logging 

data  

A proactive detection method was 

proposed to detect ransomware 

attacks before these are fully 

deployed on the victim host using 

an experimental testbed for host 

log data collection from bare 

metal servers. 

99.87% 

The evaluation of accuracy is mainly employed 

on  2 user data. 

Experimentation on the public datasets is needed 

because it shows the true real-world attack. 

 

[34] 

Customized deep 

contractive 

autoencoder-based 

attribute learning 

(DCAEZSL) for zero-

day ransomware 

detection 

By increasing the penalty term in 

the proposed model’s loss 

function, it is possible to separate 

known and unknown ransomware 

using an unsupervised approach. 

92.8% 

The proposed algorithm is based on one type of file 

extension to classify it as either a good-ware or a 

ransomware.  

Other ransomware classes and families may not be 

detected. 

[35] 

Ransomware detection 

and mitigation using 

Shannon entropy and 

Fuzzy hash principles  

Using the experimental testbed, 

the proposed technique achieved a 

higher detection rate on the 

Windows operating system by 

using the VirusTotal and Virus 

Share APIs   

95% 

Not a proactive measure, the user is notified after 

the encryption happens. A proactive approach is 

deemed necessary. 

[36] 

A domain-specific 

ransomware analysis 

in a Wireshark packet 

analysis tool. 

Using a lightweight approach to 

analyze, identify, and track 

dynamic ransomware behavior 

during runtime to uncover 

ransomware, and network threats 

and detect infection using 

minimum effort. 

- 

It is a manual process that needs a lot of effort, 

expertise, and understanding of the Wireshark tool. 

No machine learning is used.  

 

http://virusshare.com/
https://contagiodump.blogspot.in/
https://www.offensivecomputing.net/
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An Extensive review of the literature depicts the 

implementation of behavioral and dynamic features that 

are effective in thwarting ransomware attacks. However, 

there is a significant scope for refinement in creating 

accurate and efficient models. To address this, we have 

derived inspiration from the concepts presented in [26], 

[27], [28] and [29].  

The proposed solution aims to extract and 

transform 1D data into 2D data and employ a Siamese net 

to identify and differentiate distinct behaviors, enhancing 

the performance and accuracy of ransomware detection. 

 

3. METHODOLOGY 

This section explains the selected dataset, the 

materials, the selected model, and the methods of training, 

testing, and validation steps applied to achieve the 

objectives of this work. Figure-2 illustrates the 

methodology steps. 

 

 
 

Figure-2. Proposed methodology. 

 

3.1 Dataset Exploration 

The dataset is a very crucial part of the presented 

analysis. The quality of data influences the model 

performance and results. We explored two malware 

repositories namely, 1) Virus Share and 2) Virus Total. 

These repositories offer unique insights and opportunities 

to researchers and security personnel in tackling cyber 

threats. Virus Share has an extensive collection of 

malware families, enabling researchers to gain a better 

understanding of imaging cyber threats. On the contrary, 

Virus Total is a collaborative platform, as shown in 

Figure-2. It fosters proactive threat intelligence gathering 

and combines the collective expertise of security 

professionals, researchers, and independent contributors 

worldwide, providing a comprehensive view of potential 

threats by consolidating metadata and analysis results from 

multiple antivirus engines and other security tools. 

Although these repositories can be helpful in 

threat intelligence and cybersecurity analysis, it is 

important to note that these may not be suitable for 

analyzing ransomware. Ransomware is a specific type of 

malware that requires specialized techniques and tools for 

analysis. Therefore, we have to look into other public 

repositories to search for a ransomware dataset that meets 

the requirements. 

 

 
 

Figure-3. Workflow of virus total repository. 

 

3.2 The Ransap Dataset  

Based on the idea by Arabo et al., [32] where 

byte read and write, memory usage, API calls, and read & 

write count provide important features and contain 

significant insight for ransomware analysis, we found a 

public dataset called Ransap (Ransomware Access Pattern 

dataset) [37]. It is an open-access dataset that focuses on 

capturing the dynamic behavior of ransomware, 

specifically the read and write operations, which are 

crucial for understanding the precise difference between 

ransomware and goodware behavior, to facilitate the 

training and evaluating of machine learning models to 

combat the cyber threat. The dataset contains seven 

prominent ransomware specimens, including those offered 

as a service formally known as RaaS, along with 5 

goodware samples. Table-2 enlists Ransap dataset features 

and Table 3 displays a comparison for the explored dataset 

and respective domain. 

 

Table-2. Ransap dataset features. 
 

The Read 

Operation 

• Time in seconds 

• Time in nanoseconds 

• Logical block address (LBA) 

• Size of the operation (in 

bytes) 

The Write 

Operation 

• Time in seconds 

• Time in nanoseconds 

• Size of the operation (in 

bytes) 

• Entropy 1 (every block or 

4096 bytes) 

• Entropy 2 (sum of eight 

entropy values for every 

256) 
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Table-3. Comparison table of selected dataset and other 

popular respository. 
 

 
Virus 

Share 

Virus 

Total 
RanSap 

Availability Yes Yes Yes 

Accessibility Close Close Open 

Ransomware 

Only 
No No Yes 

Type of 

threat 
Malware 

Intrusion 

detection 
Ransomware 

Primary 

Purposed 
Research 

General 

purpose 
Research 

 

3.3 Preprocessing 

 

Data conversion 

We initiated this phase by extracting the read and 

write access from the dataset which is a crucial step in 

crafting an effective model. This was identified as an 

effective feature and key indicator that encapsulates the 

true behavior and actions of both benign and ransomware 

entities. 

However, raw data rarely aligns perfectly with 

the proposed model's architecture. To bridge this gap, the 

extracted features underwent a metamorphosis (Figure-4 

illustrates), transitioning into an image format. This 

transformation prepared the data for the Siamese network's 

image-based processing pipeline. 

 

 
 

Figure-4. Data preprocessing steps. 

 

Converting to bytecode is crucial in terms of 

precision, and integrity of the entries, keeping such in the 

bytecode ensures capturing the exact behavior of each 

application and also reduces the need for a huge number of 

entries in a human-readable format (see Figure-5). 

 

 
 

The serialization (bytecode) depends on domain 

requirements, which can include interoperability, and the 

complexity of the converted data, therefore in this case we 

used Pickle to serialize the data into a binary format. 

Algorithms 1 and 2 elaborate the steps of conversion from 

dataset to images as shown in Table-4. 

 

 
 

The algorithm depicted in Figure-6 illustrates the 

procedure of transforming the data into an image format 

for the proposed model. It specifically emphasizes the 

creation of a colored image by associating data elements 

Dataset 
Selection

Read and 
Write 
Access

Byte code 
Convert

ed to 
Images

Algorithm 2: Create Image from Bytecode 

 

Input:   Bytecode File 

Output:   Colored Image File 

Deserialize the Bytecode: 

Open the file containing the serialized data in 

binary read mode . 

Use a deserialization method to reconstruct the 

original data from  the bytecode . 

Determine Image Dimensions : 

Determine the height of the image from the 

number of rows in the deserialized data . 

Determine the width of the image from the number 

of elements in the first row of the deserialized data. 

Initialize the Image size: 

Create a new image with the determined width and 

height, or using a pre-predefine size. 

Populate the Image with pixeled values: 

Iterate over each row and each element within that 

row in the deserialized data . 

For each element : 

Determine the pixel value based on the 

element. 

in the image to its value. 

 

Save the Image : 

End  
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with RGB color values ranging from 0 to 255. This 

concept was initially introduced in references [17], [18], 

[19]. The critical step lies in defining the data mapping to 

RGB values. Table-4 presents sample images of 

ransomware and benign software after the conversion 

process. 

 

  

Goodware sample AEScrypt Goodware sample ZIP 

  
Ransomware sample Cerber Ransomware sample wannacry 

 

3.4 Experimental Setup 

Because of the limitations of the size of the 

dataset and computational resources, we chose the 

AlexNet [22] architecture, due to its proven efficiency. It 

is notable for its streamlined structure with fewer layers 

and varying filter sizes in its convolutional stages. This 

decision was based on the need for a model that can 

deliver good performance while being computationally 

efficient. AlexNet's design inherently requires less 

computational power as compared to the more demanding 

VGG [21] models, which use a consistent 3x3 filter 

approach across much deeper layers, resulting in a 

substantial increase in the number of parameters to train. 

The proposed model was customized for the 

research-specific requirements while leveraging the 

strengths of both architectures. We combined the 

architectural principles of AlexNet with aspects of the 

VGG setup, using a simplified convolutional layer design. 

This hybrid model includes convolutional layers with 

varying filter numbers, 16, 32, and then 16 again, but 

maintains a constant kernel size of 3x3, resembling VGG's 

consistency in filter dimensions. It also incorporates 2x2 

max pooling to effectively reduce spatial dimensions. This 

strategic implementation is to achieve a careful balance 

between computational efficiency and to ensure that the 

model is both practical and efficient for the task.  

Figure-4 Illustrates the proposed model 

architecture, showing the use of multiple convolutional 

layers with varying numbers of filters, followed by max 

pooling. 

 

 
 

Figure-5. The architecture of the proposed model. 
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It is a Siamese neural network model, designed to 

learn from the paired network to assess the input data's 

similarity and dissimilarity. The model uses a shared 

architecture, which is implemented and named as a base 

network, to process each input in the pair. This approach 

ensured that the same weights and computational logic 

apply to both inputs, which is crucial for learning a 

consistent representation of the inputs regardless of their 

order in the pair. 

The transition from max-pooling layers to dense 

layers marks a shift from feature extraction to decision-

making processes, where features are projected and 

viewed in 2d space to measure the similarities. 

A Euclidean distance function is used to quantify 

the similarity or dissimilarity of the resultant vectors, 

images were classified based on their proximity to either 

the ransomware or benign range. Equation 1 shows the 

Euclidean distance function for computing the distance 

between classes in the feature space. 

 

𝑑(𝑟, 𝑔) = √∑ (𝑟𝑖 − 𝑔𝑖)
2𝑛

𝑖=1                                        (1) 

 

Where: 

 

d(r,g)    is the Euclidean distance between goodware b and 

ransomware r. 

r_i,...r_n   and g_i… g_(n ) are projected features points in 

features space. 

Specifically, if an image's Euclidean distance 

aligns closely with the ransomware range, it is classified 

as ransomware; conversely, if it aligns with the benign 

range, it is categorized as benign. Then contrastive 

function, which penalizes the model for inaccurate 

predictions based on the Euclidean distance is used as the 

loss function, as shown in equation 2. 

 

𝐿(𝑦, 𝑑) = (1 − 𝑦)
1

2
(𝑑)2 + (𝑦)

1

2
𝑚𝑎𝑥(0, 𝑚 − 𝑑)2      (2) 

 

Where: 

𝐿(𝑦, 𝑑) is the contrastive loss for the pair. 

𝑦 is the euclidean distance value computed. 

𝑚 is the margin, a value between the none similar pair  

(1 − 𝑦)
1

2
(𝑑)2 for the similar pair to be closer as much as 

possible. 

(𝑦)
1

2
max(0, 𝑚 − 𝑑)2 for the none similar pair to be as far 

as possible. 

 

3.5 Training 

The training begins with two input layers, input a 

and input b which intend to be designed to receive paired 

inputs. These inputs are both processed by an instance of 

the base network. The base network, as described in the 

implementation section, is dual arm network that ensures 

the sharing of weight across both arms, allowing the 

model to learn the pattern and update its loss in a recurve 

manner. 

The sequential layering of convolutional layers 

and pooling layers enables a step-by-step learning process, 

understanding the hierarchical features from basic edges, 

and textures, to intricate patterns. Moreover, network 

training spans 100 epochs with an optimal learning rate of 

0.0005 facilitated by the Adam optimizer, resulting in the 

commendable convergence of model parameters. This 

optimization strategy produced a model characterized by 

417,410 trainable parameters, a testament to its 

streamlined and effective design. Despite the relatively 

modest parameter count, the network displayed significant 

training accuracy and training loss improvements, as 

shown in Figures 5 and 6. This highlights the network's 

capability to achieve high-level performance metrics, 

positioning it as a promising tool for distinguishing 

between benign and malicious software entities. 

 

 
 

Figure-6. Training and validation loss. 

 

 
 

Figure-7. Training and validation accuracy. 
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Table-4. Proposed model parameter settings. 
 

Total Number of 

Samples 

130 (50 good ware and 70 

ransomware) 

Total Number of Classes 
12 (7 Ransomwares, 5 good 

ware) 

Batch size 86 

Training and Testing 

split 
70% / 30% 

Number Channels or Z 

dimension 

5 (of size 32, 64, 64, 32, 

and 32) 

Kernel 3 X 3 

Activation function Relu 

Max-pooling 2x2 

Dropout No 

Epoch 100 

Learning rate 0.0005 

Optimizer Adam 

Moment decay (Beta) 2 (0.98 each) 

Gradient Clipping 1 

Total Parameters 417,410 

Total Trainable 

Parameter 
417,410 

 

We initially used higher batch normalization and 

dropout layers, which caused the training phase to be 

distracted and underfitted and caused the model’s loss 

function to be reduced drastically, but the training and 

validation accuracy remained constant at 0.5%. While this 

is a common issue with Siamese networks, we tried 

several learning rate parameters, and tuned other hype-

parameter values such as additional layers, additional 

filters, and Z channels, as shown in the parameter table 5, 

making the model more complex.  Specifically, to make 

the training more robust and to prevent overfitting, we 

added two more parameters alpha value 1 and alpha value 

2, which are known as moment decay [38] of value 0.98, 

specifically for smoothing out the gradient and controlling 

the learning rate's variance, respectively. 

Gradient clipping [39] was also used in the 

training process to ensure more stability and to be less 

prone to diverging. This ensures that the learning rate 

update remains small, preventing the model from 

overshooting. 

 

3.6 Testing and Validation  

In this section, we elucidate the steps taken to 

enhance the performance of the proposed Siamese model, 

specifically on the unobserved segment of the dataset, 

thereby emphasizing our efforts to address model 

generalization beyond the training data.  

The learning rate is an important parameter in 

training neural networks that determines the optimization 

steps taken by the model. For some particular sets of 

experiments, we assigned smaller learning rates of 0.0001, 

which resulted in higher accuracy and F1-score in certain 

configurations. This indicated more precise convergence 

but was slow.  

On the other hand, we tested higher learning rates 

of 0.0005, which achieved the highest accuracy and 

maintained a balanced precision and recall. The outcome 

provides reassurance that we have determined the optimal 

learning rate for the proposed model in terms of both 

convergence speed and performance quality. 

The performance metrics are directly influenced 

by the threshold value. The threshold value serves as a 

boundary line for the pairs of inputs and, therefore, affects 

the confusion matrix, accuracy, precision, recall, F1-score, 

and AUC scores. We found that a threshold value of 0.5 

resulted in higher recall scores, indicating that the model 

excelled in identifying true positives but at the expense of 

false positives, as shown in Table 5. Subsequently, by 

using a lower threshold value of 0.4, we observed a mix of 

outcomes, sometimes leading to increased precision as 

shown in Figure-10. 

 

Table-5. Model performance on test and validation data. 
 

Lr.rate Thr. value Acc. Prec. recall F1-score AUC 

0.001 0.5 0.9411 1 0.8978 0.9485 0.95 

0.001 0.4 0.8378 1 0.6756 0.8043 0.85 

0.0001 0.5 0.9767 0.9571 1 0.9731 0.98 

0.0001 0.4 0.9411 0.9521 0.9589 0.9549 0.95 

0.0005 0.5 0.9767 1 0.9544 0.9789 0.98 

0.0005 0.4 0.9767 0.9571 1 0.9731 1 
 

Lr* = learning rate, Thr.value = Threshold value, Prec= precision. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure-8. Confusion matrix showing the effect of learning rate and threshold values. 

 

The above confusion matrices highlighted 

different learning rates and threshold values that impact 

the model's ability to successfully classify the ransomware 

behavior and goodware behavior. It also illustrates the 

trade-offs between true positives, true negatives, false 

positives, and false negatives detection. 

 

4. RESULTS AND DISCUSSIONS 

In this section, we conduct a detailed analysis of 

our model's performance across different learning rates 

and threshold values, crucial for optimizing its 

classification accuracy and efficiency. We assess their 

impact on key performance metrics, including accuracy, 

precision, recall, F1-score, and Area under the Curve 

(AUC). 

Using a learning rate of 0.001 and a threshold 

value of 0.5, the model achieved an accuracy rate of 

94.11%, a precision rate of 100%, a recall rate of 89.78%, 

an F1-score of 94.85%, and AUC of 95%, as depicted in 

figure 9(a). This setup shows a high level of precision, 

indicating that the model is highly reliable when 

predicting a positive class. However, the recall rate 

suggests that the model is somewhat conservative since it 

missed a small portion of actual positive cases. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure-9. A radar chart showing the effect of varying learning rates and threshold  

values on model performance. 
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After testing the model with a learning rate of 

0.001 and a threshold value of 0.4, we observed an 

accuracy of 83.78%. The precision remained at 100%, 

while the recall decreased to 67.56%. The F1-score also 

decreased to 80.43%, and the AUC decreased to 85%. The 

decrease in accuracy and recall suggests that the model 

became less effective at identifying true positives, despite 

maintaining a high precision.  

However, when we decreased the learning rate to 

0.0001 with a threshold of 0.5, the model's performance 

improved significantly, as shown in Figure-9(b). It 

achieved an accuracy of 97.67%, precision of 95.71%, a 

perfect recall of 100%, F1-score of 97.31%, and AUC of 

98%. This configuration indicates a highly effective 

balance between precision and recall, showing that the 

model is excellent at identifying true positives without 

significantly increasing false positives. At a threshold of 

0.4 and a learning rate of 0.0001, the model showed 

consistently high performance with an accuracy of 

94.11%, a precision rate of 95.21%, a recall rate of 

95.89%, an F1-score of 95.49%, and a AUC of 95%. 

These results indicate that the model is both precise and 

sensitive, and is capable of accurately detecting positive 

cases. 

When the learning rate was slightly increased to 

0.0005 and the threshold was set to 0.5 as shown in 

Figure-9(c), the model achieved an identical accuracy of 

97.67% as compared to the lower learning rate at the same 

threshold. However, the model achieved a perfect 

precision rate of 100%, a recall rate of 95.44%, an F1-

score of 97.89%, and an AUC of 98%. These results 

demonstrate exceptional performance, especially in terms 

of precision and F1-score, indicating that the model is 

highly reliable at predicting positive classes and 

maintaining high accuracy overall. 

After adjusting the threshold to 0.4 and setting 

the learning rate at 0.0005, the model delivered 

exceptional performance across all the metrics. It achieved 

an accuracy of 97.67%, precision of 95.71%, recall of 

100%, F1-score of 97.31%, and an AUC of 100%. This 

configuration represents the best balance achieved by the 

model. This indicates an excellent ability to identify true 

positives without increasing false positives, and the model 

achieved perfect performance in distinguishing classes as 

measured by the AUC. Adjusting the learning rate and 

threshold values has a profound impact on the model's 

performance across various metrics. Lower learning rates 

(0.0001 and 0.0005) with appropriately chosen threshold 

values tend to yield the best overall performance in terms 

of accuracy, precision, recall, F1-score, and AUC, 

demonstrating the importance of fine-tuning these 

parameters for optimal model performance. 

 

 
 

Figure-10. The influence of learning rate and threshold value on accuracy and ROC AUC  

using time-series graph. 

 

Figure-10. Illustrates the impact of learning rate 

and threshold values on the model's accuracy and AUC. 

These measures provide a comprehensive understanding 

of a model's performance, encompassing its capacity to 

accurately identify targets, minimize false positives, 

effectively balance precision and recall, and overall 

predictive excellence. 

The analysis provides valuable insights into the 

influence of different parameters on model outcomes. 

When the learning rate is set to 0.001 and the threshold is 

set to 0.5, the model performs exceptionally well with an 

accuracy rate of 94.11% and a perfect precision score. 

This configuration results in an F1-score of 0.9485 and an 

AUC of 0.95, indicating a good balance between 
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sensitivity and specificity. It is interesting to note that 

decreasing the threshold to 0.4 at the same learning rate 

leads to a decrease in accuracy and recall, highlighting the 

importance of threshold adjustments on model 

performance. Figure-9 also shows the impact of learning 

rate and threshold values on the model's accuracy and 

AUC. 

After reducing the learning rate to 0.0001, we 

observed an improved model accuracy of 97.67% at both 

threshold levels (0.5 and 0.4), with slight variations in 

precision and recall. The AUC at a threshold of 0.5 

reached an impressive 0.98, which was consistent with the 

model's performance at a learning rate of 0.0005 and a 

threshold of 0.5.  

This consistency suggests that lower learning 

rates, when finely tuned with appropriate threshold values, 

can significantly improve the model's reliability and 

interpretability. 

Notably, when the learning rate was set to 0.0005 

and the threshold was set to 0.4, the model achieved an 

unparalleled blend of metrics: an accuracy of 97.67%, a 

precision of 95.71%, a perfect recall, an F1-score of 

0.9731, and a AUC of 1. This configuration stands out as 

it demonstrates the potential for achieving optimal 

performance through meticulous parameter optimization. 

The data in the confusion matrix is crucial to understand 

the nuances of model performance. It provides detailed 

information about true positive, false positive, true 

negative and false negative rates in different scenarios. 

This detailed analysis not only confirms the model's ability 

to distinguish between classes but also emphasizes the 

importance of learning rate and threshold settings in 

maximizing model precision and recall. By incorporating 

these insights, it becomes clear that strategic parameter 

tuning is essential for improving model performance. This 

may guide future research toward more effective and 

reliable predictive modeling. 

The proposed model was also evaluated using the 

current studies and state-of-the-art models that use small 

samples of malware and ransomware datasets, as 

mentioned in Table-7. The parameters considered include 

implementing similar techniques of image recognition, 

accuracy, precision, F1 score, and AUC as in [4]. 

 

Ref. Model Accuracy Precision F1-score AUC 

[4] 

Few-shot learning 

method based on the 

Siamese Neural Network 

89 % 85% 86% 98% 

[27] 
Pre-trained deep CNN 

model 
75% 77% 75% 94% 

[26] 
Pre-trained Inception-V1 

on ImageNet 
75% 79 % 76% 96% 

[27] Xception 73 % 78 % 77% 96% 

Proposed 

model 

Few-shot learning with 

Siamese network using 

architectural principles 

of AlexNet and VGG 

97.6% 95.7% 97.3% 100% 

 

Accuracy measures the proportion of true results. 

At 98%, the accuracy of the proposed model surpasses the 

pre-trained deep CNN model and the pre-trained 

Inception-V1 on ImageNet (both at 75%), Xception 

(73%), and the few-shot learning method based on the 

Siamese Neural Network (89%). This significant 

improvement suggests that the proposed model is 

exceptionally adept at classifying images of ransomware 

correctly, largely because of the enhanced learning 

capabilities introduced by integrating features of AlexNet 

and VGG into a Few-shot learning framework. 

Precision assesses the model's ability to return 

only relevant instances. The proposed model achieves a 

precision of 95%, outperforming the pre-trained deep 

CNN model (77%), the pre-trained Inception-V1 on 

ImageNet (79%), Xception (78%), and the Few-shot 

learning method based on the Siamese Neural Network 

(85%). This shows that the proposed model is more 

reliable in identifying true positives while minimizing the 

risk of false alarms. 

The F1-score is a metric that considers both 

precision and recall, by taking the harmonic mean of the 

two. Compared to other models being evaluated, with F1-

scores ranging from 75% to 86%, the proposed model 

outperforms them all. This means that the proposed model 

performs optimally, striking the right balance between 

precision and recall, making it highly effective in 

scenarios where both are critical. 

The proposed model achieves a perfect AUC 

ROC of 100%, showing its superior ability to discriminate 

between classes across all thresholds. This contrasts with 

the other models, where AUC ROC scores range from 

94% to 98%, signifying that the proposed model not only 

excels in identifying true positives and true negatives but 

also maintains this excellence across all levels of decision 

thresholds. 

The proposed model's architectural integration of 

AlexNet and VGG principles within a Few-shot learning 

Siamese network framework is central to its superior 

performance. This integration leverages the deep, 

hierarchical feature extraction capabilities of AlexNet and 

VGG, combined with the efficient learning of novel 

classes from limited examples that Few-shot learning 

frameworks offer. 
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5. CONCLUSION AND FEATURE WORK 

Finally, we conclusively establish that the 

proposed model surpasses existing models notably in 

accuracy, precision, F1-score, and AUC. Integrating 

AlexNet and VGG's architectural principles into a Few-

shot learning framework, along with the comparative 

learning strengths of the Siamese network, has enabled us 

to achieve exceptional performance. This highlights the 

importance of architectural innovation and the potential of 

combining existing methodologies to achieve 

breakthroughs in deep learning applications. 
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